2020 WATER QUALITY MONITORING REPORT FOR THE BIG TUJUNGA WASH MITIGATION AREA

Prepared for:

LOS ANGELES COUNTY PUBLIC WORKS

900 Fremont Avenue, 2nd Floor Annex Alhambra, CA 91802

Prepared by:

CHAMBERS GROUP, INC.

5 Hutton Centre Drive, Suite 750 Santa Ana, California 92707 (949) 261-5414

January 2021

TABLE OF CONTENTS

<u>!</u>	Page
SECTION 1.0 – EXECUTIVE SUMMARY	1
SECTION 2.0 – BACKGROUND	2
SECTION 3.0 – MATERIALS AND METHODS	6
SECTION 4.0 – RESULTS	10
SECTION 5.0 – DISCUSSION	18
SECTION 6.0 – GLOSSARY	22
LIST OF FIGURES	
Figure 1:Mitigation Area Water Quality Sampling Stations	7
LIST OF TABLES	
Table 1: Major Activities to Date at the Big Tujunga Wash Mitigation Area	2
Table 2: Pesticides Potentially Used at the Angeles National Golf Club	4
Table 3: Water Quality Sampling Locations and Conditions for November 2020	8
Table 4: Water Quality Sampling Parameters	9
Table 5: Baseline Water Quality (2000)	10
Table 6: Summary of Water Quality Results – November 2, 2020	11
Table 7: National and Local Recommended Water Quality Criteria - Freshwaters	12
Table 8: Temperature and pH-Dependent Values of the CMC (Acute Criterion) Mussels Absent	13
Table 9: Temperature and pH-Dependent Values of the CCC (Chronic Criterion) Mussels Absent and EFish Life Stages Present	•
Table 10: 30-Day Average Objective for Ammonia-N for Freshwaters Applicable to Waters Subject to "Early Life Stage Present" Condition (mg N/L)	
Table 11: One-Hour Average Objective for Ammonia-N for Freshwaters (mg N/L)	

2020 Water Quality Monitoring Report Big Tujunga Wash Mitigation Area

Table 12: Example Calculated Values for Maximum Weekly Average Temperature for Growth and	d Short-
Term Maxima for Survival of Juvenile and Adult Fishes During the Summer	17
Table 13: Discussion of November 2020 Water Quality Sampling Results	18
Table 14: 2020 Water Quality Results Compared to Baseline (2000)	21
Table 14. 2020 Water Quality Nesults Compared to Baseline (2000)	∠ 1

LIST OF APPENDICES

APPENDIX A - 2020 Big Tujunga Wash Mitigation Area Water Quality Monitoring Program Laboratory Results

Distribution

Water quality monitoring reports are distributed to the following agencies:

Los Angeles County Public Works Ms. Julianna Colwell 900 South Fremont Avenue Alhambra, California 91803-1331

California Department of Fish and Wildlife Mr. David T. Lin Ph.D. Senior Environmental Scientist (Specialist) CA Dept. of Fish and Wildlife 4665 Lampson Ave. suite C Los Alamitos, CA 90720

Regional Water Quality Control Board, Los Angeles Region (4) Ms. Valerie Carrillo Zara 320 West 4th Street, Suite 200 Los Angeles, California 90013

U.S. Fish and Wildlife Service Ms. Christine Medak 2117 Salk Avenue, Suite 250 Carlsbad, California 92008

U.S. Army Corps of Engineers Mr. Aaron Allen P.O. Box 532711 Los Angeles, California 90053-2325

Interested Party
Mr. William Eick
2604 Foothill Boulevard, Suite C La Crescenta, California 91214

SECTION 1.0 – EXECUTIVE SUMMARY

As part of a water quality monitoring program on-going since 2000, water quality sampling of the Big Tujunga Ponds and Haines Canyon Creek was conducted on November 2, 2020. Additional water samples were collected on November 13, 2020, to test for organochlorine pesticides. The water quality sampling results are summarized below:

- Observed temperatures were well below levels of concern for growth and survival of warmwater fish species at all stations with the exception of the inlet to the Tujunga Ponds which was recorded at 19.3 degrees Celsius (°C), slightly higher than the weekly average maximum temperature for the growth of brook trout and rainbow trout (example species in Table 12). However, only a single temperature reading was taken in the fall and the weekly summer average temperature is unknown.
- Dissolved oxygen (DO) levels at one of the sample stations was below the minimum recommended level (5.0 mg/L) for Basin Plan objectives and EPA's criteria for warmwater fish species.
- Potential hydrogen (pH) readings at all three sample stations were below the recommended range of 6.5 to 8.5 identified in the Basin Plan objectives, and were within the recommended range of 5.0 to 9.0 for EPA's criteria for human health.
- Nitrate-Nitrogen was below the drinking water maximum standard of 10 mg/L for both Basin Plan standards and EPA criteria for human health at all sample stations. Nitrite-Nitrogen and Ammonia-Nitrogen were not detected at any of the sample stations.
- Nutrient levels as measured by total Phosphorus-P concentration were within or below the lower end of the EPA's recommended maximum range of 0.05 to 0.10 mg/L for the desired goal of preventing plant nuisances in streams.
- No pesticides or residual chlorine were detected at any of the sample stations.
- Turbidity levels were below the EPA's secondary drinking water standard of 5 NTU. The turbidity at the inlet of the Tujunga Ponds was slightly above the EPA's drinking water maximum standard of 1.0 NTU for systems that use conventional or direct filtration; however, waters within the Mitigation Area are not filtered systems intended for human consumption.
- Fecal coliform levels detected were below the standard geometric mean of 126 MPN/100 ml at all sample stations. However, the standards are for *E. coli* and the water quality results are for fecal coliform and total coliform.

SECTION 2.0 – BACKGROUND

Los Angeles County Public Works (Public Works) purchased an approximately 210-acre parcel in Big Tujunga Wash as a mitigation area for Los Angeles County Flood Control District (LACFCD) projects throughout Los Angeles County. In coordination with local agencies, Public Works defined a number of measures to improve habitat quality at the site. A Final Master Mitigation Plan (FMMP) was prepared to guide the implementation of these enhancements. The FMMP also includes a monitoring program to gather data on conditions at the site during implementation of the improvements. The FMMP was prepared and is currently being implemented by Chambers Group, Inc. (Chambers Group). Water quality monitoring was conducted on a quarterly basis from the fourth quarter of 2000 through the fourth quarter of 2005. In 2006, monitoring was conducted on a semi-annual basis. In 2007 through 2009 monitoring was conducted annually, in December. In 2010, monitoring was conducted in November and pesticide sampling was conducted in early December. In 2012, monitoring was conducted in February and November. From 2013 to present, monitoring has been conducted annually in the fall. This report presents the results of the water quality sampling for November 2020.

The Big Tujunga Wash Mitigation Area (Mitigation Area) is located just east of Hansen Dam in the Shadow Hills area of the City of Los Angeles. Both Big Tujunga Wash, an intermittent stream, and Haines Canyon Creek, a perennial stream, traverse the Mitigation Area in an east-to-west direction. The East Tujunga Pond and West Tujunga Pond are located outside of the Mitigation Area, at the far northeastern portion of the site.

2.1 PROJECT SITE ACTIVITIES

A timeline of project-related activities including water quality sampling events is presented in Table 1.

Table 1: Major Activities to Date at the Big Tujunga Wash Mitigation Area

Date	Activity			
2000, April	Baseline water quality sampling			
2000, November to	Arundo, tamarisk, and pepper tree removal Chemical (Rodeo®)			
2001, November	application			
2000, December to	Water byscinth removal			
2000, November	Water hyacinth removal			
2000, December	Fish Sampling at Haines Canyon Creek			
2000, December	Water quality sampling			
2001 Innuarity areaset	Exotic aquatic wildlife (non-native fish, crayfish, bullfrog, and turtle)			
2001, January to present	removal – conducted quarterly			
2001, February	Partial riparian planting			
2001, March	Selective clearing at Canyon Trails Golf Club			
2001, March	Water quality sampling			
2001, June	Water quality sampling			
2001, July	Fish Sampling at Haines Canyon Creek			
2001, September	Water quality sampling			
2001, October to	Fish Compling at Unines Conven Creek			
2001, November	Fish Sampling at Haines Canyon Creek			

Date	Activity				
2001, December	Water quality sampling				
2002, January	Final riparian planting				
2002, July	Upland replacement planting				
2002, March	Water quality sampling				
2002, June	Water quality sampling				
2002, July	Fish Sampling at Haines Canyon Creek				
2002, September	Water quality sampling				
2002, October	Grading at Canyon Trails Golf Club begins				
2002, October 2002, November	Fish Sampling at Haines Canyon Creek				
2002, December	Water quality sampling				
2003, March	Water quality sampling				
2003, April	Meeting with Canyon Trails Golf Club to discuss future use of herbicides and fertilizers				
2003, June	Water quality sampling				
2003, August	Fish Sampling at Haines Canyon Creek				
2003, September	Water quality sampling				
2003, fall	Completion of the golf course construction				
2003, December	Water quality sampling				
2004, January	Fish Sampling at Haines Canyon Creek				
2004, April	Water quality sampling				
2004, April	Rock Dam Removal Day				
	Angeles National Golf Club (previously named Canyon Trails) opens to the				
2004, June	public				
2004, July	Water quality sampling				
2004, October	Water quality sampling				
2004, December	Water quality sampling				
2005, April	Water quality sampling				
2005, June	Water quality sampling				
2005, October	Water quality sampling				
2005, December	Water quality sampling				
2006, July	Water quality sampling				
2006, December	Water quality sampling				
2007, December	Water quality sampling				
2008, December	Water quality sampling				
	As of 2009, the Station Fire was the largest fire in the recorded history of				
	Angeles National Forest and the 10th largest fire in California since 1933.				
2009, August to October	The fire burned a total of 160,577 acres. The fire was fully contained on				
	October 16, 2009. (Source: Angeles National Forest Incident Update				
	available - http://www.inciweb.org/incident/1856/)				
2009, December	Water quality sampling				
2010, November	Water quality sampling				
2010, December	Water quality sampling for pesticides				
2011, September to					
2012, January	Water lettuce removal				
2012, February	Water quality sampling				

Date	Activity
2012, November	Water quality sampling
2013, October	Water quality sampling
2014, October	Water quality sampling
2015, November	Water quality sampling
2016, November 7	Water quality sampling
2017, December	The Creek Fire began on December 5, 2017, approximately 4 miles east of Sylmar, California. The Creek Fire burned a total of 15,619 acres. Much of the Mitigation Area burned, and close to 75 percent of the entire site exhibited signs of severe surface burns, including approximately all of the riparian communities found along Haines Canyon Creek, and more than half of the vegetation within the Big Tujunga Wash area. The fire was fully contained on January 9, 2018. (Sources: Angeles National Forest Incident Update available - https://inciweb.nwcg.gov/incident/5669/; Chambers Group 2018 Post Fire Assessment Report)
2017, December 21	Water quality sampling
2018, December 17	Water quality sampling
2019, April 23	After April 23, 2019 Chambers Group stopped the use of all herbicides within the Mitigation Area. From April 23 onward, exotic plants were (and
	continue to be) managed with mechanical weed control methods only.
2019, October 30	Water Quality Sampling
2020, November 2	Water Quality Sampling

2.2 UPSTREAM LAND USES

The monitoring program has been designed to specifically address inputs to the site from upstream land uses such as the Angeles National Golf Club (previously named Canyon Trails Golf Club). The golf course has been operating since June 2004. Potential negative impacts to aquatic species from run-on to the site that contains excessive nutrients or pesticides are of primary concern. Pesticides potentially used at the Angeles National Golf Course include herbicides, insecticides, fungicides, and grass growth inhibitors (Table 2).

Actual use of pesticides is based on golf course maintenance needs. Based on the pesticide use information from the Angeles National Golf Club, analysis of water samples for glyphosate, chlorpyrifos, other organophosphorous pesticides, and organochlorine pesticides is included in the sampling program for the Mitigation Area.

Table 2: Pesticides Potentially Used at the Angeles National Golf Club

Manufacturer and Product Name	Active Ingredient	Use
Syngenta Primo Maxx	trinexapac-ethyl	grass growth inhibitor used for turf management
Syngenta Reward	diquat dibromide	landscape and aquatic herbicide
Syngenta Barricade	prodiamine	pre-emergent herbicide
Bayer Prostar 70 WP	flutolanil	fungicide

Manufacturer and Product Name	Active Ingredient	Use	
Monsanto QuikPRO	ammonium salt of glyphosphate and diquat dibromide	herbicide	
Monsanto Rodeo® Verdicon		emerged aquatic weed and	
Kleenup® Pro	glyphosate	brush herbicide	
Lesco Prosecutor			
Valent ProGibb T&O	gibberellic acid	plant growth regulator	
BASF Insignia 20 WG	pyraclostrobin	fungicide	
BASF Stalker	Isopropylamine salt of Imazapyr	herbicide	
Dow Agrosciences Surflan A.S.	oryzalin	herbicide	
Dow Agrosciences Dursban Pro	chlorpyrifos	insecticide	
Mycogen Scythe	pelargonic acid	herbicide	

Source: J. Reidinger, Angeles National Golf Club, pers. comm. to M. Chimienti, LACDPW, March 18, 2004 and Angeles National Golf Club Monthly Summary Pesticide Use Reports (December 2004, February 2005 and April 2007).

SECTION 3.0 – MATERIALS AND METHODS

3.1 SAMPLING STATIONS

Four sampling locations have been identified for the monitoring program for the Mitigation Area (Figure 1). Table 3 summarizes sampling locations and the conditions observed on November 2, 2020.

Figure 1:Mitigation Area Water Quality Sampling Stations

Table 3: Water Quality Sampling Locations and Conditions for November 2020

Date	November 2, 2020		
Air Temperature	Between 18.3 and 27.2 (°Celsius) during sample collection period		
Skies	Clear		
Observations	Water was clear at all locations		
Sampling Locations	Latitude	Longitude	Time of sample
(1) Inflow to Tujunga Ponds	34.26852 N	118.34000 W	1030
(2) Outflow from Tujunga Ponds	34.26799 N	118.34249 W	0930
(3) Big Tujunga Wash	34.26989 N	118.35126 W	station dry
(4) Haines Canyon Creek, before exit from the site	34.26655 N	118.35786 W	0830

3.2 SAMPLING PARAMETERS

Table 4 summarizes the sampling parameters included in the water quality monitoring program. The following meters were used in the field:

- pH and temperature Milwaukee MW102 PRO+ 2-in-1 Temperature and pH Meter
- Dissolved oxygen Milwaukee MW600 PRO Dissolved Oxygen Meter
- Turbidity Hanna Instruments HI98703 Turbidity Portable Meter

Water testing was performed at Enthalpy Analytical, LLC located in Orange, California and Test America located in Savannah, Georgia. Samples were taken at mid-depth, along a transect perpendicular to the stream channel alignment. Quality assurance/quality control (QA/QC) procedures in each laboratory followed the methods described in their respective quality assurance manuals.

Table 4: Water Quality Sampling Parameters

Parameter	Analysis Location	Analytical Method
total Kjeldahl nitrogen (TKN)	laboratory	EPA 351.2
nitrite - nitrogen (NO ₂ -N)	laboratory	EPA 300.0 by IC
Nitrate - nitrogen (NO₃-N)	laboratory	EPA 300.0 by IC
ammonia (NH ₄)	laboratory	EPA 350.1
orthophosphate - P	laboratory	Standard Methods 4500PE/EPA 365.1
total phosphorus - P	laboratory	Standard Methods 4500PE/EPA 365.1
total coliform	laboratory	Standard Methods 9221B
fecal coliform	laboratory	Standard Methods 9221C
turbidity	field	EPA 180.1
glyphosate (Roundup/Rodeo) ¹	laboratory	EPA 547
chlorpyrifos and organophosphorus pesticides ²	laboratory	EPA 8141A
organochlorine pesticides ³	laboratory	EPA 608
dissolved oxygen	field	Standard Methods 4500-O G
total residual chlorine	laboratory	Standard Methods 4500-Cl
temperature	field	Standard Methods 2550
рН	field	Standard Methods 4500-H+

Sources for analytical methods:

EPA. Method and Guidance for Analysis of Water.

American Public Health Association, American Waterworks Association, and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. Washington D.C.

¹ First analysis completed in the first quarter of 2004

² First analysis completed in the fourth quarter of 2004. This analytical method tests for the following chemicals: azinphos- methyl, bolster, coumaphos, diazinon, chlorpyrifos, demeton, dichlorvos, disulfoton, ethoprop, fensulfothion, fenthion, mevinphos, naled, phorate, runnel, stirophos, parathion-methyl, tokuthion, and trichloronate.

³ First analysis completed in the fourth quarter of 2004. This analytical method tests for the following chemicals: azinphos- methyl, bolster, coumaphos, diazinon, chlorpyrifos, demeton, dichlorvos, disulfoton, ethoprop, fensulfothion, fenthion, mevinphos, naled, phorate, runnel, stirophos, parathion-methyl, tokuthion, and trichloronate.

SECTION 4.0 – RESULTS

4.1 BASELINE WATER QUALITY

Sampling and analysis conducted by Public Works prior to implementation of the FMMP is considered the baseline for water quality conditions at the Mitigation Area. The results of baseline analyses conducted in April 2000 are presented in Table 5. Higher bacteria and turbidity observed in the 4/18/2000 samples are attributable to a rain event. Phosphorus levels were also high in the 4/18/2000 samples, due to release from sediments.

Table 5: Baseline Water Quality (2000)

Parameter	Units	Date (2000)	Haines Canyon Creek, Inflow to Tujunga Ponds	Haines Canyon Creek, Outflow from Tujunga Ponds	Big Tujunga Wash	Haines Canyon Creek, just before exit from site
	MPN/	4/12	3,000	5,000	170	1,700
Total coliform	100 ml	4/18	2,200	170,000	2,400	70,000
	MPN/	4/12	500	300	40	80
Fecal coliform	100 ml	4/18	500	30,000	2,400	50,000
		4/12	0	0	0	0
Ammonia-N	mg/L	4/18	0	0	0	0
		4/12	8.38	5.19	0	3.73
Nitrate-N	mg/L	4/18	8.2	3.91	0.253	0.438
		4/12	0.061	0	0	0
Nitrite-N	mg/L	4/18	0.055	0	0	0
		4/12	0	0.1062	0.163	0
Kjeldahl-N	mg/L	4/18	0	0.848	0.42	0.428
Dissolved		4/12	0.078	0.056	0	0.063
phosphorus	mg/L	4/18	0.089	0.148	0.111	0.163
Total		4/12	0.086	0.062	0	0.066
phosphorus	mg/L	4/18	0.113	0.153	0.134	0.211
	std	4/12	7.78	7.68	7.96	7.91
pH	units	4/18	7.18	7.47	7.45	7.06
		4/12	1.83	0.38	1.75	0.6
Turbidity	NTU	4/18	4.24	323	4070	737

MPN – most probable number NTU – nephelometric turbidity units

4.2 NOVEMBER 2020 RESULTS

Results of analyses conducted by Enthalpy Analytical and Test America are appended to this report (Appendix A) and summarized in Table 6.

Table 6: Summary of Water Quality Results - November 2, 2020

Parameter	Units	Inflow to Tujunga Ponds	Outflow from Tujunga Ponds	Big Tujunga Wash	Haines Canyon Creek, just before exit from site
Temperature	°C	19.3	16.9	NA	14.4
Dissolved Oxygen	mg/L	6.5	3.8	NA	8.4
рН	std units	5.48	5.64	NA	5.78
Total residual chlorine	mg/L	ND	ND	NA	ND
Ammonia-Nitrogen	mg/L	ND	ND	NA	ND
Kjeldahl Nitrogen	mg/L	0.55	ND	NA	ND
Nitrite-Nitrogen	mg/L	ND	ND	NA	ND
Nitrate-Nitrogen	mg/L	5.8	4.7	NA	4.0
Orthophosphate-P (dissolved phosphorus)	mg/L	0.026	ND	NA	ND
Total phosphorus-P	mg/L	0.060	0.062	NA	0.049
Glyphosate	μg/L	ND	ND	NA	ND
Chlorpyrifos* (and other Organophosphorus Pesticides)	μg/L	ND	ND	NA	ND
Pesticides (EPA 608)** (Organochlorine Pesticides)	μg/L	ND	ND	NA	ND
Turbidity	NTU	1.30	0.35	NA	0.30
Fecal Coliform Bacteria	(MPN/100 ml)	47	23	NA	17
Total Coliform Bacteria	(MPN/100 ml)	>1600	>1600	NA	>1600

NA – data not available; station dry on the sample date

NTU – nephelometric turbidity units

MPN – most probable number

ND – non-detect

> - Value exceeds indicated concentration

^{*} The analytical method used for chlorpyrifos (EPA 8141A) also tests for the following chemicals: azinphos-methyl, bolster, coumaphos, demeton, diazinon, dichlorvos, disulfoton, ethoprop, fensulfothion, fenthion, merphos, methyl parathion, mevinphos, naled, phorate, ronnel, stirophos, tokuthion, and trichloronate.

^{**} EPA method 608 tests for aldrin, BHC, Chlordane, DDD, DDE, DDT, dieldrin, endrin, endosulfan, heptaclor, methoxychlor, and toxaphene. Water samples for these pesticides were collected on November 13, 2020.

4.3 COMPARISON OF RESULTS WITH AQUATIC LIFE CRITERIA

Tables 7 through 12 present objectives established by the United States Environmental Protection Agency (USEPA) and the Los Angeles Regional Water Quality Control Board (Regional Board) for protection of beneficial uses including freshwater aquatic life.

Table 7: National and Local Recommended Water Quality Criteria - Freshwaters

Demonstration	Basin Plan			
Parameter	Objectives ^a	СМС	ССС	Human Health
Temperature (°C)	b	See Table 12	See Table 12	
Dissolved oxygen (mg/L)	>7.0 mean >5.0 min	5.0 ^c (warmwater, early life stages, 1-day minimum)	6.0 ^c (warmwater, early life stages, 7-day mean)	
pН	6.5 - 8.5		6.5-9.0 ^{d,e}	5.0-9.0 ^{d,e}
Total residual chlorine (mg/L)	0.1	0.019 ^{d,e}	0.011 ^{d,e}	4.0 (maximum residual disinfectant level goal)
	126 ^f			Swimming standards:
Fecal coliform (MPN/100	(geometric mean for <i>E. coli</i>)			33 ^g (geometric mean for enterococci)
ml)	(water contact recreation)			126 ^g (geometric mean for <i>E. coli</i>)
Ammonia- nitrogen (mg/L)	See Tables 10 and 11	See Table 8	See Table 9	
Nitrite-nitrogen (mg/L)	1			1 (primary drinking water standard)
Nitrate-nitrogen (mg/L)	10			10 (primary drinking water standard)
Total phosphorus (mg/L)		<0.05 – 0.1 ^e (recommendation for streams, no criterion)		
Turbidity (NTU)	h	i	i	5 (secondary drinking water standard) ≤1.0 (standard for systems that filter)

Notes:

MPN most probable numberNTU nephelometric turbidity units

-- No criterion

CMC Criteria Maximum Concentration or acute criterion
CCC Criteria Continuous Concentration or chronic criterion

a Source: California Regional Water Quality Control Board, Los Angeles Region. 1994. Water Quality Control Plan (Basin Plan). As amended.

- **b** Narrative criterion: "The natural receiving water temperature of all regional waters shall not be altered unless it can be demonstrated to the satisfaction of the Regional Board that such alteration in temperature does not adversely affect beneficial uses."
- c Source: USEPA. 1986. Ambient Water Quality Criteria for Dissolved Oxygen. EPA 440-5-86-003. Washington, D.C.
- d Source: USEPA. 1999. National Recommended Water Quality Criteria Correction. EPA 822-Z-99-001. Washington, D.C.
- e Source: USEPA. 1986. Quality Criteria for Water. EPA 440/5-86-001. Washington, D.C.
- f Single sample limits E. coli density shall not exceed 235/100 ml.
- g Source: USEPA. 1986. Ambient Water Quality Criteria for Bacteria 1986. EPA 440-5-84-002. Washington, D.C.
- h Narrative criterion: "Waters shall be free of changes in turbidity that cause nuisance or adversely affect beneficial uses."
- i Narrative criterion for freshwater fish and other aquatic life: "Settleable and suspended solids should not reduce the depth of the compensation point for photosynthetic activity by more than 10 percent from the seasonally established norm for aquatic life."

Table 8: Temperature and pH-Dependent Values of the CMC (Acute Criterion) Mussels Absent

			CN	/IC: Musse	els Absent	, mg N/L				
				Т	emperatu	re (°Celsiu	ıs)			
рН	0	14	16	18	20	22	24	26	28	30
6.5	58.0	58.0	58.0	58.0	43.7	37.0	31.4	26.6	22.5	19.1
6.6	55.7	55.7	55.7	55.7	41.9	35.5	30.1	25.5	21.6	18.3
6.7	53.0	53.0	53.0	53.0	39.9	33.8	28.6	24.3	20.6	17.4
6.8	49.9	49.9	49.9	49.9	37.6	31.9	27.0	22.9	19.4	16.4
6.9	46.5	46.5	46.5	46.5	35.1	29.7	25.2	21.3	18.1	15.3
7.0	42.9	42.9	42.9	42.9	32.3	27.4	23.2	19.7	16.7	14.1
7.1	39.1	39.1	39.1	39.1	29.4	24.9	21.1	17.9	15.2	12.8
7.2	35.1	35.1	35.1	35.1	26.4	22.4	19.0	16.1	13.6	11.5
7.3	31.2	31.2	31.2	31.2	23.5	19.9	16.8	14.3	12.1	10.2
7.4	27.3	27.3	27.3	27.3	20.6	17.4	14.8	12.5	10.6	8.98
7.5	23.6	23.6	23.6	23.6	17.8	15.1	12.8	10.8	9.18	7.77
7.6	20.2	20.2	20.2	20.2	15.3	12.9	10.9	9.27	7.86	6.66
7.7	17.2	17.2	17.2	17.2	12.9	11.0	9.28	7.86	6.66	5.64
7.8	14.4	14.4	14.4	14.4	10.9	9.21	7.80	6.61	5.60	4.74
7.9	12.0	12.0	12.0	12.0	9.07	7.69	6.51	5.52	4.67	3.96
8.0	9.99	9.99	9.99	9.99	7.53	6.38	5.40	4.58	3.88	3.29
8.1	8.26	8.26	8.26	8.26	6.22	5.27	4.47	3.78	3.21	2.72
8.2	6.81	6.81	6.81	6.81	5.13	4.34	3.68	3.12	2.64	2.24
8.3	5.60	5.60	5.60	5.60	4.22	3.58	3.03	2.57	2.18	1.84
8.4	4.61	4.61	4.61	4.61	3.48	2.95	2.50	2.11	1.79	1.52
8.5	3.81	3.81	3.81	3.81	2.87	2.43	2.06	1.74	1.48	1.25
8.6	3.15	3.15	3.15	3.15	2.37	2.01	1.70	1.44	1.22	1.04
8.7	2.62	2.62	2.62	2.62	1.97	1.67	1.42	1.20	1.02	0.862

			CI	ЛС: Musse	els Absent	, mg N/L				
				Т	emperatu	re (°Celsiu	ıs)			
рН	0	14	16	18	20	22	24	26	28	30
8.8	2.19	2.19	2.19	2.19	1.65	1.40	1.19	1.00	0.851	0.721
8.9	1.85	1.85	1.85	1.85	1.39	1.18	1.00	0.847	0.718	0.608
9.0	1.57	1.57	1.57	1.57	1.19	1.00	0.851	0.721	0.611	0.517

Note: Native species of freshwater mussels are not known for Big Tujunga Wash or Haines Canyon Creek. CMC – Criteria Maximum Concentration (ammonia)

Source: USEPA. 2009. Draft 2009 Update Aquatic Life Ambient Water Quality Criteria for Ammonia - Freshwater. EPA 822-D-09-001. Washington, D.C

Table 9: Temperature and pH-Dependent Values of the CCC (Chronic Criterion) Mussels Absent and Early Fish Life Stages Present

		CCC: Musso	els Absent	and Earl	y Fish Life	Stages Pre	sent, mg	N/L		
				Te	mperatur	e (°Celsius)			
рН	0	14	16	18	20	22	24	26	28	30
6.5	6.36	6.36	6.36	6.36	6.36	6.11	5.37	4.72	4.15	3.65
6.6	6.26	6.26	6.26	6.26	6.26	6.02	5.29	4.65	4.09	3.60
6.7	6.15	6.15	6.15	6.15	6.15	5.91	5.19	4.57	4.01	3.53
6.8	6.00	6.00	6.00	6.00	6.00	5.77	5.08	4.46	3.92	3.45
6.9	5.84	5.84	5.84	5.84	5.84	5.61	4.93	4.34	3.81	3.35
7.0	5.64	5.64	5.64	5.64	5.64	5.42	4.76	4.19	3.68	3.24
7.1	5.41	5.41	5.41	5.41	5.41	5.20	4.57	4.02	3.53	3.10
7.2	5.14	5.14	5.14	5.14	5.14	4.94	4.35	3.82	3.36	2.95
7.3	4.84	4.84	4.84	4.84	4.84	4.66	4.09	3.60	3.16	2.78
7.4	4.52	4.52	4.52	4.52	4.52	4.34	3.82	3.36	2.95	2.59
7.5	4.16	4.16	4.16	4.16	4.16	4.00	3.52	3.09	2.72	2.39
7.6	3.79	3.79	3.79	3.79	3.79	3.65	3.21	2.82	2.48	2.18
7.7	3.41	3.41	3.41	3.41	3.41	3.28	2.89	2.54	2.23	1.96
7.8	3.04	3.04	3.04	3.04	3.04	2.92	2.57	2.26	1.98	1.74
7.9	2.67	2.67	2.67	2.67	2.67	2.57	2.26	1.98	1.74	1.53
8.0	2.32	2.32	2.32	2.32	2.32	2.23	1.96	1.72	1.52	1.33
8.1	2.00	2.00	2.00	2.00	2.00	1.92	1.69	1.49	1.31	1.15
8.2	1.71	1.71	1.71	1.71	1.71	1.64	1.45	1.27	1.12	0.982
8.3	1.45	1.45	1.45	1.45	1.45	1.40	1.23	1.08	0.949	0.835
8.4	1.23	1.23	1.23	1.23	1.23	1.18	1.04	0.914	0.804	0.706
8.5	1.04	1.04	1.04	1.04	1.04	0.999	0.878	0.772	0.679	0.597
8.6	0.878	0.878	0.878	0.878	0.878	0.844	0.742	0.652	0.573	0.504
8.7	0.742	0.742	0.742	0.742	0.742	0.714	0.628	0.552	0.485	0.426
8.8	0.631	0.631	0.631	0.631	0.631	0.606	0.533	0.469	0.412	0.362
8.9	0.539	0.539	0.539	0.539	0.539	0.518	0.455	0.400	0.352	0.309
9.0	0.464	0.464	0.464	0.464	0.464	0.446	0.392	0.345	0.303	0.266

Note: Native species of freshwater mussels are not known for Big Tujunga Wash or Haines Canyon Creek. CCC – Criteria Continuous Concentration (ammonia)

Source: USEPA. 2009. Draft 2009 Update Aquatic Life Ambient Water Quality Criteria for Ammonia - Freshwater. EPA 822-D-09-001. Washington, D.C.

Table 10: 30-Day Average Objective for Ammonia-N for Freshwaters Applicable to Waters Subject to the "Early Life Stage Present" Condition (mg N/L)

рН				Temp	erature (°C	elsius)			
pri	14	16	18	20	22	24	26	28	30
6.5	6.67	6.06	5.33	4.68	4.12	3.62	3.18	2.80	2.46
6.6	6.57	5.97	5.25	4.61	4.05	3.56	3.13	2.75	2.42
6.7	6.44	5.86	5.15	4.52	3.98	3.50	3.07	2.70	2.37
6.8	6.29	5.72	5.03	4.42	3.89	3.42	3.00	2.64	2.32
6.9	6.12	5.56	4.89	4.30	3.78	3.32	2.92	2.57	2.25
7.0	5.91	5.37	4.72	4.15	3.65	3.21	2.82	2.48	2.18
7.1	5.67	5.15	4.53	3.98	3.50	3.08	2.70	2.38	2.09
7.2	5.39	4.90	4.31	3.78	3.33	2.92	2.57	2.26	1.99
7.3	5.08	4.61	4.06	3.57	3.13	2.76	2.42	2.13	1.87
7.4	4.73	4.30	3.78	3.32	2.92	2.57	2.26	1.98	1.74
7.5	4.36	3.97	3.49	3.06	2.69	2.37	2.08	1.83	1.61
7.6	3.98	3.61	3.18	2.79	2.45	2.16	1.90	1.67	1.47
7.7	3.58	3.25	2.86	2.51	2.21	1.94	1.71	1.50	1.32
7.8	3.18	2.89	2.54	2.23	1.96	1.73	1.52	1.33	1.17
7.9	2.80	2.54	2.24	1.96	1.73	1.52	1.33	1.17	1.03
8.0	2.43	2.21	1.94	1.71	1.50	1.32	1.16	1.02	0.897
8.1	2.10	1.91	1.68	1.47	1.29	1.14	1.00	0.879	0.773
8.2	1.79	1.63	1.43	1.26	1.11	0.973	0.855	0.752	0.661
8.3	1.52	1.39	1.22	1.07	0.941	0.827	0.727	0.639	0.562
8.4	1.29	1.17	1.03	0.906	0.796	0.700	0.615	0.541	0.475
8.5	1.09	0.990	0.870	0.765	0.672	0.591	0.520	0.457	0.401
8.6	0.920	0.836	0.735	0.646	0.568	0.499	0.439	0.386	0.339
8.7	0.778	0.707	0.622	0.547	0.480	0.422	0.371	0.326	0.287
8.8	0.661	0.601	0.528	0.464	0.408	0.359	0.315	0.277	0.244
8.9	0.565	0.513	0.451	0.397	0.349	0.306	0.269	0.237	0.208
9.0	0.486	0.442	0.389	0.342	0.300	0.264	0.232	0.204	0.179

Source: California Regional Water Quality Control Board, Los Angeles Region. 2005. Amendments to the Water Quality Control Plan – Los Angeles Region with Respect to Early Life Stage Implementation Provisions of the Inland Surface Water Ammonia Objectives for Freshwaters. Taken from USEPA. 1999. 1999 Update of Ambient Water Quality Criteria for Ammonia. EPA 822-R-99-014. Washington, D.C.

Table 11: One-Hour Average Objective for Ammonia-N for Freshwaters (mg N/L)

рН	Waters Designated COLD and/or MIGR	Waters Not Designated COLD and/or MIGR
6.5	32.6	48.8
6.6	31.3	46.8
6.7	29.8	44.6
6.8	28.1	42.0
6.9	26.2	39.1
7.0	24.1	36.1
7.1	22.0	32.8
7.2	19.7	29.5
7.3	17.5	26.2
7.4	15.4	23.0
7.5	13.3	19.9
7.6	11.4	17.0
7.7	9.65	14.4
7.8	8.11	12.1
7.9	6.77	10.1
8.0	5.62	8.40
8.1	4.64	6.95
8.2	3.83	5.72
8.3	3.15	4.71
8.4	2.59	3.88
8.5	2.14	3.20
8.6	1.77	2.65
8.7	1.47	2.20
8.8	1.23	1.84
8.9	1.04	1.56
9.0	0.885	1.32

COLD – Beneficial use designation of Cold Freshwater Habitat

MIGR – Beneficial use designation of Migration of Aquatic Organisms

Source: California Regional Water Quality Control Board, Los Angeles Region. 2002. Amendments to the Water Quality Control Plan – Los Angeles Region with Respect to Inland Surface Water Ammonia Objectives. Taken from USEPA. 1999. 1999 Update of Ambient Water Quality Criteria for Ammonia. EPA 822-R-99-014. Washington, D.C.

Table 12: Example Calculated Values for Maximum Weekly Average Temperature for Growth and Short-Term Maxima for Survival of Juvenile and Adult Fishes During the Summer

Species	Growth - Maximum Weekly Average Temperature (°C)	Survival - Short-Term Maximum Temperature (°C)
black crappie	27	
brook trout	19	24
bluegill	32	35
channel catfish	32	35
emerald shiner	30	
largemouth bass	32	34
rainbow trout	19	24

Source: USEPA. 1986. Quality Criteria for Water. EPA 440/5-86-001. Washington, D.C.

SECTION 5.0 – DISCUSSION

Results from the November 2020 sampling are described by parameter in Table 13. Except for pH, none of the 2020 parameters tested were substantially different from the baseline conditions recorded in 2000 and/or were still within the recommended range for each parameter as provided in the Basin Plan and/or EPA objectives. The first water sampling for Glyphosate, Chlorpyrifos, and other organophosphorus and organochlorine pesticides did not occur until 2004. None of these pesticides were detected in 2004 nor were they detected in 2020. Table 14 shows the 2020 water quality sampling results as compared to the 2000 baseline water quality sampling results. In addition, none of the parameters were substantially different between pre- and post-Creek Fire conditions (2016/2017) and parameters continue to fall largely within or below the recommended range for each parameter as provided in the Basin Plan and/or EPA objectives. Four of the parameters tested in 2020 were above the recommended range for at least one of the sample locations and are discussed in Table 13.

Table 13: Discussion of November 2020 Water Quality Sampling Results

Parameter	Discussion
Temperature	• Observed temperatures were well below levels of concern for growth and survival of warmwater fish species at all stations with the exception of the inlet to the Tujunga Ponds which was recorded at 19.3 °C, slightly higher than the weekly average maximum temperature for the growth of brook trout and rainbow trout (example species in Table 12). In addition, the reference maxima provided in Table 12 for the growth and survival of juvenile and adult fishes during the summer are provided by the EPA and mainly apply to sportfishing species and not the native fish species that occupy the Mitigation Area. According to the US Fish and Wildlife's Recovery Outline for Santa Ana Sucker (March 2021), Santa Ana sucker are typically most abundant in clear water, at temperatures generally less than 22°C and have experienced mortality at temperatures greater than 26.7 °C. According to UC Davis' Center for Watershed Sciences, Santa Ana speckled dace prefer summer water temperatures below 20°C, but may tolerate temperatures as high as 26 to 28°C. Arroyo chub are most common in streams with temperatures between 10 and 24°C. All temperatures recorded were below or within the range for survival of sensitive fish species that occur in the Mitigation Area; however, only a single temperature reading was taken in the fall and the weekly summer average temperature is unknown.
Dissolved oxygen	DO levels were 6.5 mg/L at the inflow to the Tujunga Ponds, 3.8 mg/L at the outflow from the Tujunga Ponds, and 8.4 mg/L where Haines Canyon Creek exits the site. DO levels at one of the sample stations was below the minimum recommended level (5.0 mg/L) for Basin Plan objectives and EPA's criteria for warmwater fish species. Low DO can be caused by a variety of factors but is commonly caused by the presence of algae in slow moving or stagnant water bodies such as the Tujunga Ponds. In addition, illegal dams slow the flow of water inhibiting the natural aeration that occurs in flowing water bodies such as Haines Canyon Creek. The rapid removal of illegal dams as they are discovered and continued public education as to why damming

Parameter	Discussion
	the creek and wash is detrimental to aquatic species, is essential to the health of the Mitigation Area.
рН	pH readings were 5.48 at the inflow to the Tujunga Ponds, 5.64 at the outflow from the Tujunga Ponds, and 5.78 where Haines Canyon Creek exits the site. The pH readings at all three sample stations were below the recommended range of 6.5 to 8.5 identified in the Basin Plan objectives, and were within the recommended range of 5.0 to 9.0 for EPA's criteria for human health. It is unknown what conditions caused the low pH at the Tujunga Ponds and Haines Canyon Creek. As sampling is conducted in the fall, there is potential for leaf litter from deciduous trees and shrubs to acidify the water for a short time until bacteria and other microorganisms can start breaking down plant matter and buffering acidic conditions. Additional sampling throughout the year would be required to try and pinpoint the exact cause of low pH.
Total residual chlorine	No residual chlorine was detected at any sample station.
Nitrogen	 Nitrate-Nitrogen measurements at all sample stations were below the drinking water maximum standard of 10 mg/L for both Basin Plan standards and EPA criteria for human health. Nitrite-Nitrogen was not detected at any sample station.
	Ammonia-Nitrogen was not detected at any sample station.
Phosphorus	The observed Total Phosphorus-P concentrations were 0.060 mg/L at the inflow to the Tujunga Ponds, 0.062 mg/L at the outflow to the Tujunga Ponds, and 0.049 mg/L where Haines Canyon Creek exits the site. Total Phosphorus-P concentration at all sample stations was within or below the lower end of the EPA's recommended maximum range of 0.05 to 0.10 mg/L for the desired goal of preventing plant nuisances in streams.
Glyphosate	Glyphosate was not detected at any sample station
Chlorpyrifos and other Organophosphorus Pesticides	Organophosphorus Pesticides including Chlorpyrifos, that were analyzed by EPA method 8141A were not detected at any sample station.
Organochlorine Pesticides	Organochlorine pesticides analyzed by EPA Method 608 were not detected at any sample station.
Turbidity	Turbidity readings were 1.30 NTU at the inflow to the Tujunga Ponds, 0.35 NTU at the outflow from the Tujunga Ponds, and 0.30 NTU where Haines

Parameter	Discussion
	Canyon Creek exits the site. Turbidity levels were below the EPA's secondary drinking water standard of 5 NTU. The turbidity at the inlet of the Tujunga Ponds was slightly above the EPA's drinking water maximum standard of 1.0 NTU for systems that use conventional or direct filtration; however, waters within the Mitigation Area are not filtered systems intended for human consumption.
	 Per the Basin Plan objectives, the fresh water bacteria standard for water contact recreation is for <i>E. coli</i> (126 MPN/100 ml geometric mean, 235 MPN/100 ml single sample limits). Fecal coliform levels were 47 MPN/100 ml at the inflow to the Tujunga Ponds, 23 MPN/100 ml at the outflow from the Tujunga Ponds, and 17 MPN/100 ml where Haines Canyon Creek exits the site. Fecal coliform levels detected were below the standard geometric mean at all sample stations. Sampling specifically for <i>E. coli</i> was not conducted.
	 Total coliform levels were greater than 1600 MPN/100 ml at all sample stations. [Note that recreation standards are for E. coli. Per the Basin Plan, total coliform standards apply to marine waters and waterbodies where shellfish can be harvested for human consumption.]
Coliform Bacteria	• The presence of coliform bacteria indicates fecal contamination by warmblooded mammal and avian species including waterfowl. While not all coliform bacteria are harmful, elevated levels of coliform bacteria indicate an increased likelihood that harmful coliform bacteria such as <i>E. coli</i> , may be present. Sources of coliform pollution in the Mitigation Area may include runoff from surrounding residential areas, horses (equestrian) that utilize the trails, waterfowl that occupy the Tujunga Ponds, other birds, aquatic organisms, and mammals that use the ponds and creek, and illegal human uses of the ponds and creek such as swimming and bathing. Organic materials that carry coliform bacteria have the potential to be harmful to aquatic life, as oxygen in the water may become low during aerobic decomposition of organic materials. Spikes in the levels of coliform bacteria in the Mitigation Area have not been uncommon since water quality sampling began in 2000.

mg/L – milligrams per liter NTU – nephelometric turbidity units MPN – most probable number

Table 14: 2020 Water Quality Results Compared to Baseline (2000)

Parameter	Units	Date (2000)	Date (2021)	Haines Canyon Creek, Inflow to Tujunga Ponds (2000)	Haines Canyon Creek, Inflow to Tujunga Ponds (2021)	Haines Canyon Creek, Outflow from Tujunga Ponds (2000)	Haines Canyon Creek, Outflow from Tujunga Ponds (2021)	Big Tujunga Wash (2000)	Big Tujunga Wash (2021)	Haines Canyon Creek, just before exit from site (2000)	Haines Canyon Creek, just before exit from site (2021)
Total coliform	MPN/ 100 ml	4/12 4/18	11/2	3,000 2,200	>1600	5,000 170,000	>1600	170 2,400	NA	1,700 70,000	>1600
Fecal coliform	MPN/ 100 ml	4/12 4/18	11/2	500 500	47	300 30,000	23	40 2,400	NA	80 50,000	17
Ammonia-N	mg/L	4/12 4/18	11/2	0	ND	0	ND	0	NA	0	ND
Nitrate-N	mg/L	4/12 4/18	11/2	8.38 8.2	5.8	5.19 3.91	4.7	0 0.253	NA	3.73 0.438	4.0
Nitrite-N	mg/L	4/12 4/18	11/2	0.061 0.055	ND	0	ND	0	NA	0	ND
Kjeldahl-N	mg/L	4/12 4/18	11/2	0	.55	0.1062 0.848	ND	0.163 0.42	NA	0.428	ND
Dissolved phosphorus	mg/L	4/12 4/18	11/2	0.078 0.089	0.026	0.056 0.148	ND	0 0.111	NA	0.063 0.163	ND
Total phosphorus	mg/L	4/12 4/18	11/2	0.086 0.113	0.060	0.062 0.153	0.062	0 0.134	NA	0.066 0.211	0.049
рН	std units	4/12 4/18	11/2	7.78 7.18	5.48	7.68 7.47	5.64	7.96 7.45	NA	7.91 7.06	5.78
Turbidity	NTU	4/12 4/18	11/2	1.83 4.24	1.30	0.38 323	0.35	1.75 4070	NA	0.6 737	0.30

NA – data not available; station dry on the sample date

MPN – most probable number

> - Value exceeds indicated concentration

NTU – nephelometric turbidity units

ND – non-detect

SECTION 6.0 – GLOSSARY

Ammonia-Nitrogen – NH3-N is a gaseous alkaline compound of nitrogen and hydrogen that is highly soluble in water. Un-ionized ammonia (NH3) is toxic to aquatic organisms. The proportions of NH3 and ammonium (NH4+) and hydroxide (OH-) ions are dependent on temperature, pH, and salinity.

Chlorine, Residual – The chlorination of water supplies and wastewaters serves to destroy or deactivate disease-producing organisms. Residual chlorine in natural waters is an aquatic toxicant.

Chlorpyrifos - White crystal-like solid insecticide widely used in homes and on farms. Used to control cockroaches, fleas, termites, ticks crop pests.

Coliform Bacteria – Several genera of bacteria belonging to the family Enterobacteriaceae. Based on the method of detection, the coliform group is historically defined as facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas and acid formation within 48 hours at 35 C.

Coliform Bacteria, Fecal – Part of the intestinal flora of warm-blooded animals. Presence in surface waters is considered an indication of pollution.

Dissolved Oxygen - Dissolved oxygen (DO) is the amount of oxygen that is present in water. Water bodies receive oxygen from the atmosphere and from aquatic plants. Running water, such as that of a swift moving stream, dissolves more oxygen than the still water of a pond or lake.

Glyphosate - White compound broad-spectrum herbicide used to kill weeds.

Kjeldahl Nitrogen – Named for the laboratory technique used for detection, Kjeldahl nitrogen includes organic nitrogen and ammonia nitrogen.

Nitrate-Nitrogen – NO3--N is an essential nutrient for many photosynthetic autotrophs.

Nitrite-Nitrogen – NO2--N is an intermediate oxidation state of nitrogen, both in the oxidation of ammonia to nitrate and in the reduction of nitrate.

Organochlorine Pesticides – An older class of pesticides, that are effective against a variety of insects. These chemicals were introduced in the 1940s, and many of their uses have been cancelled or restricted by the U.S. EPA because of their environmental persistence and potential adverse effects on wildlife and human.

Organophosphorus Pesticides – These pesticides are active against a broad spectrum of insects and have accounted for a large share of all insecticides used in the United States. Although organophosphorus insecticides are still used for insect control on many food crops, most residential uses have been phased out in the United States. Certain organophosphorus insecticides are also registered for public health applications (e.g., mosquito control) in the United States.

Orthophorus – The reactive form of phosphorus, commonly used as fertilizer.

pH – The hydrogen ion activity of water (pH) is measured on a logarithmic scale, ranging from 0 to 14. The pH of "pure" water at 25° C is 7.0 (neutral). Low pH is acidic; high pH is basic or alkaline.

Phosphorus, Total – In natural waters, phosphorus occurs almost solely as orthophosphates, condensed phosphates, and organically bound phosphate. Phosphorus is essential to the growth of organisms.

Turbidity – Attributable to the suspended and colloidal matter in water, including clay, silt, finely divided organic and inorganic matter, soluble colored organic compounds, and plankton and other microscopic organisms. The reduction of clearness in turbid waters diminishes the penetration of light and therefore can adversely affect photosynthesis.

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 435704

Report Level: II

Report Date: 11/18/2020

Analytical Report *prepared for:*

Heather Franklin Chambers Group 5 Hutton Centre Drive Suite 750 Santa Ana, CA 92707

Location: Big Tujunga

Authorized for release by:

Diane Galvan, Project Manager

rane Salva

714-771-9928

diane.galvan@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Heather Franklin
Chambers Group
5 Hutton Centre Drive

Suite 750

Santa Ana, CA 92707

Lab Job #: 435704

Location: Big Tujunga

Date Received: 11/02/20

Sample ID	Lab ID	Collected	Matrix
PONDS INLET	435704-001	11/02/20 10:30	Water
POND OUTLET	435704-002	11/02/20 09:30	Water
HAINES CREEK EXIT	435704-003	11/02/20 08:30	Water

Entrappy Analytical - Orange			<		Chain of (Chain of Custody Record	ord	Iurn	Vround Tin	Turn Around Time (rush by advanced notice only)	nced notice on	<u> </u>
Figure Company Title Company	6		HA		J	natss		tandard:	,	5 Day:	3 Day:	
Enthalpy Analytical - Orange Perthalpy Analytical - Orange			<u></u>	~. ~.		of		Day:		1 Day:	Custom TAT:	
STOMER INFORMATION STOMER INFORMATION PROJECT INFORMATION Analysis Request Analy		Enthalpy Analytical 931 W. Barkley Avenue, Ora	l - Orange ange, CA 92868		1 7	Soil/Solid V = Drinking Wat ure Product SE/	e SD = Sedimen	" *	Preservatives $Na2S2O3$ $4 = H2SO4$	2 = HCl 3 = HNO ₃ = NaOH 6 = Othe		t Temp:
Sample ID Sampling Sampling Sampling Sample ID Sample & No. 18 Sampling Sample ID Sample & No. 18 Sampling Sample ID Sampling Sample ID Sampling Sample ID Sample & No. 18 Sample &		Phone /14-//1-6	2900		OBWC = NAC	anssil = 1		Jei	1		(lab use on	Ş
Chauther Group T.C. Hearthice Franklin Proj. Name: Bay Tojunga, Sample By: Tanjet Name: Name: Bay Tojunga, Sample By: Tanjet Name: Name: Bay Tojunga, Name: Bay Tojunga,	ت ا	JSTOMER INFORMATION	,	PROJEC	CT INFORMATION	1	A	nalysis Requ		S) Test Instr	actions / Comme	ıts
Heathlet Franking Proj. Name: Big. T. Jungs, Proj. Name: Big. T. Jungs, Proj. Name: Proj. Name: Big. T. Jungs, Proj. Name:	Company:	1		ete#			(v2)			pha gha		
Herantling Chambergrap inc. con Proj. #: Address:	Report To:	Heather Franklin	Proj				bai			dnex 101 d		
Sample 10 Date / The Company / Title Date / Company / Company / Title Date / Company	Email:	herankling chambersgroup		j. #:			Ļlu		-	Jowo 1884 Ju		
Address: Address: Sampled By: Large Legis	Address:			:#:			WY		١	100/ 100/		
Sampled By: Sampled By: Tanget Let 11 2 20.20 10.56			Ado	lress:	:		נספ		WW	(y) 8		
Sample Date Sampling Samp	Phone:	976-420-0816	Glo	bal ID:			tin	•	ナバ	504 [10M		
Sampling Sampling Matrix Container Pres.	Fax:		Sam	npled By:			- 0-	1901	27	17 Jug Di Di 25		
Table 1 (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Sample ID	Sampling Date	Sampling Time			トナデ	少 <u>少</u> 420	feca	10/10/ 1 1240T		
Creak Exit 11/2 (2020) 643.0 W 8 V X <td>Н</td> <td>Inlet</td> <td>11 [2] 2020</td> <td>10360</td> <td></td> <td>7</td> <td>X</td> <td>X Q X</td> <td>XXX</td> <td>X</td> <td></td> <td></td>	Н	Inlet	11 [2] 2020	10360		7	X	X Q X	XXX	X		
Creak Exit v / 2/2012 W B V X X X X X X X X X X X X X X X X X X X		octlet	0202) 2)11	0690		7	Y	イスト	ソ ヌス	メメ		
Signature Print Name Company Title Date 11-2-2020		Greek Exit	Q102/2/11	0830		7	×	イイス	メャマ	イメ		
By: Aushin Burke Company/Title Date/1 By: Aushin Burke Chambers 11-2-2020 / Livro By: By: EA 11/1/202	4											
Signature Signature Austrin Burke Chambers (Author)	2										:	
By: Aushin Burke Company Title Date/I By: Aushin Burke Chambers 11-2-2020 / 11/1/20 By: Chimbers 11/1/20 By: EA 11/1/20	9											
By: Aushn Burc Company Title Date / I By: Chanbers 11-2-2020 / L/L/L/L By: Chinh EA LL/L/L/L By: By: LL/L/L	7											
By: Signature Print Name Company / Title Date / I By: C/Kin EA U/L/L By: C/Kin EA U/L/L By: EA U/L/L	8											
By: All Aushin Burke Company/Title Date/1 By: Chair Burke Chambers 11-2-2020 / Li/Lux By: EH	10											
By: All Austin Burke Chambers 11-2-2020 / Chambers 11-2-2020 / Lilyso By:		S	ignature 🥒		Print Name		- S - - -	_	itle	Ğ	_	
By: Grant Chin EA C	¹ Relinquishec	200		A			Cha	mbers		11-2-2020	12:20 /	3
By:	¹ Received By.	ne)	A		1		F.A.			4/1/13	γ721	
² Received By: ³ Relinquished By: ³ Received By:	² Relinquisheα	I By:										
³ Relinquished By: Received By:	² Received By.											
Received By:	³ Relinquishec	l By:										
	³ Received By:											

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Chambers Group Inc	Project: Big Tujunga			
Date Received: 11/2/20	Sampler's Name Present:	√Yes	No	
Section 2				
Sample(s) received in a cooler? Yes, How many? 1	No (skip section 2)		Temp (°C) No Cooler	
Sample Temp (°C), One from each cooler: #1: 1.4		#4:		,
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptan			for sample	s collected
the same day as sample receipt to have a higher temperatur	e as long as there is evidence that co	ooling has begi	un.)	
Shipping Information:				
Section 3				
Was the cooler packed with: ✓ Ice lce Packs	Bubble Wrap Styre	ofoam		
Paper None	Other			
Cooler Temp (°C): #1: 0.5 #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		./	IVO	IVA
Are sample IDs present?		√		
Are sampling dates & times present?		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Is a relinquished signature present?		V		in marketine from
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?		1	1	New York
If custody seals are present, were they intact?				1
Are all samples sealed in plastic bags? (Recommended for	Microbiology samples)	1		,
Did all samples arrive intact? If no, indicate in Section 4 be		1		
Did all bottle labels agree with COC? (ID, dates and times)		1		/#\$14CF
Were the samples collected in the correct containers for t	he required tests?	1		
Are the containers labeled with the correct preserva	tives?	1		
is there headspace in the VOA vials greater than 5-6 mm i	n diameter?			1
Was a sufficient amount of sample submitted for the requ	ested tests?	1		
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager notified?	Verbal PM Initials:	_ Date/Time		
	Email (email sent to	/on):	/	
Project Manager's response:				
(/) -				
Completed By:	Date: 11/2/70			

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist -- Rev 4, 8/8/2017

Enthalpy Analytical - Orange Orange, CA 92868

(714) 771-6900 / Fax: (510) 486-0532

Subcontract Laboratory:

Eurofins CalScience 7440 Lincoln Way

Garden Grove, CA 92841-1432

ATTN: Xuan Dang

PO#: TBD

Results Due: Standard TAT

Report Level: II
Report To: RL

Notes:

EDDs: Excel EDD

Enthalpy	Order:	<u>EO-435704</u>

PM: Diane Galvan

Email: diane.galvan@enthalpy.com

CC: incomingreports@enthalpy.com

Phone: 714-771-9928

Sample ID	Collected	Lab ID	# Cont.	Matrix	Analysis Requested	Comment
PONDS INLET	02-NOV-2020 10:30	435704-001	2	Water	Organophosphorus Pesticides	Include chloryrifos
POND OUTLET	02-NOV-2020 09:30	435704-002	2	Water	Organophosphorus Pesticides	Include chloryrifos
HAINES CREEK EXIT	02-NOV-2020 08:30	435704-003	2	Water	Organophosphorus Pesticides	Include chloryrifos

Notes:	Relinquished By:	Received By:		
		7 (-		
	Date: 11/4/162 1227	Date: 1/14/20 1227		
		/ '		
	Date:	Date:		
	Date:	Date:		

Analysis Results for 435704

Heather Franklin Chambers Group 5 Hutton Centre Drive Suite 750 Santa Ana, CA 92707

Lab Job #: 435704 Location: Big Tujunga Date Received: 11/02/20

Sample ID: PONDS INLET Lab ID: 435704-001 Collected: 11/02/20 10:30

Matrix: Water

			man	IIAI II					
435704-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 300.0							•	·	
Prep Method: METHOD									
Nitrogen, Nitrite	ND		mg/L	0.10	1	255483	11/02/20 09:00	11/02/20 17:10	RKV
Nitrogen, Nitrate	5.8		mg/L	0.10	1	255483	11/02/20 09:00	11/02/20 17:10	RKV
Method: EPA 350.1 Prep Method: METHOD									
Ammonia-N	ND		mg/L	0.10	1	255567	11/03/20	11/03/20	SGC
Method: EPA 351.2 Prep Method: METHOD									
Nitrogen, Total Kjeldahl	0.55		mg/L	0.40	1	256152	11/13/20	11/17/20	SGC
Method: SM 4500-CL-G									
Chlorine, Total Residual	ND	Н	mg/L	0.10	1	255568	11/03/20 13:51	11/03/20 13:51	WWC
Method: SM 4500-P-B5-E									
Phosphorus	0.060		mg/L	0.020	1	255852	11/06/20	11/06/20	SGC
Method: SM 4500-P-E									
Orthophosphate as P	0.026		mg/L	0.020	1	255512	11/02/20 17:49	11/02/20 17:49	SGC
Orthophosphate as PO4	0.080		mg/L	0.060	1	255512	11/02/20 17:49	11/02/20 17:49	SGC
Method: SM 9221B Prep Method: METHOD									
Coliform, Total	>1,600		MPN/100ml	1.8	1	255509	11/02/20 12:28	11/06/20 11:18	LXH
Method: SM 9221E Prep Method: METHOD									
Fecal Coliform	47		MPN/100ml	1.8	1	255509	11/02/20 12:28	11/05/20 11:03	LXH
Method: TOTAL NITROGEN									
Total Nitrogen	6.4		mg/L		1	256510	11/18/20	11/18/20	SLL

Analysis Results for 435704

Sample ID: POND OUTLET Lab ID: 435704-002 Collected: 11/02/20 09:30

Matrix: Water

435704-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 300.0							•	•	
Prep Method: METHOD									
Nitrogen, Nitrite	ND		mg/L	0.10	1	255483	11/02/20 09:00	11/02/20 17:31	RKV
Nitrogen, Nitrate	4.7		mg/L	0.10	1	255483	11/02/20 09:00	11/02/20 17:31	RKV
Method: EPA 350.1 Prep Method: METHOD									
Ammonia-N	ND		mg/L	0.10	1	255567	11/03/20	11/03/20	SGC
Method: EPA 351.2 Prep Method: METHOD									
Nitrogen, Total Kjeldahl	ND		mg/L	0.40	1	256152	11/13/20	11/17/20	SGC
Method: SM 4500-CL-G									
Chlorine, Total Residual	ND	Н	mg/L	0.10	1	255568	11/03/20 13:51	11/03/20 13:51	WWC
Method: SM 4500-P-B5-E									
Phosphorus	0.062		mg/L	0.020	1	255852	11/06/20	11/06/20	SGC
Method: SM 4500-P-E									
Orthophosphate as P	ND		mg/L	0.020	1	255512	11/02/20 17:49	11/02/20 17:49	SGC
Orthophosphate as PO4	ND		mg/L	0.060	1	255512	11/02/20 17:49	11/02/20 17:49	SGC
Method: SM 9221B Prep Method: METHOD									
Coliform, Total	>1,600		MPN/100ml	1.8	1	255509	11/02/20 12:28	11/05/20 11:03	LXH
Method: SM 9221E Prep Method: METHOD									
Fecal Coliform	23		MPN/100ml	1.8	1	255509	11/02/20 12:28	11/05/20 11:03	LXH
Method: TOTAL NITROGEN									
Total Nitrogen	4.7		mg/L		1	256510	11/18/20	11/18/20	SLL

Analysis Results for 435704

Sample ID: HAINES CREEK EXIT Lab ID: 435704-003 Collected: 11/02/20 08:30

Matrix: Water

435704-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 300.0 Prep Method: METHOD									
Nitrogen, Nitrite	ND		mg/L	0.10	1	255483	11/02/20 09:00	11/02/20 17:52	RKV
Nitrogen, Nitrate	4.0		mg/L	0.10	1	255483	11/02/20 09:00	11/02/20 17:52	RKV
Method: EPA 350.1 Prep Method: METHOD									
Ammonia-N	ND		mg/L	0.10	1	255567	11/03/20	11/03/20	SGC
Method: EPA 351.2 Prep Method: METHOD									
Nitrogen, Total Kjeldahl	ND		mg/L	0.40	1	256152	11/13/20	11/17/20	SGC
Method: SM 4500-CL-G									
Chlorine, Total Residual	ND	Н	mg/L	0.10	1	255568	11/03/20 13:51	11/03/20 13:51	WWC
Method: SM 4500-P-B5-E									
Phosphorus	0.049		mg/L	0.020	1	255852	11/06/20	11/06/20	SGC
Method: SM 4500-P-E									
Orthophosphate as P	ND		mg/L	0.020	1	255512	11/02/20 17:49	11/02/20 17:49	SGC
Orthophosphate as PO4	ND		mg/L	0.060	1	255512	11/02/20 17:49	11/02/20 17:49	SGC
Method: SM 9221B Prep Method: METHOD									
Coliform, Total	>1,600		MPN/100ml	1.8	1	255509	11/02/20 12:28	11/06/20 11:18	LXH
Method: SM 9221E Prep Method: METHOD									
Fecal Coliform	17		MPN/100ml	1.8	1	255509	11/02/20 12:28	11/05/20 11:03	LXH
Method: TOTAL NITROGEN									
Total Nitrogen	4.0		mg/L		1	256510	11/18/20	11/18/20	SLL

> Value exceeds indicated concentration

H Holding time was exceeded

ND Not Detected

Type: Blank Lab ID: QC893028 Batch: 255483

Matrix: Water Method: EPA 300.0 Prep Method: METHOD

QC893028 Analyte	Result Qual	Units	RL	Prepared	Analyzed
Nitrogen, Nitrite	ND	mg/L	0.10	11/02/20 09:00	11/02/20 10:11
Nitrogen, Nitrate	ND	mg/L	0.10	11/02/20 09:00	11/02/20 10:11

Type: Lab Control Sample Lab ID: QC893029 Batch: 255483

Matrix: Water Method: EPA 300.0 Prep Method: METHOD

QC893029 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Nitrogen, Nitrite	8.958	9.134	mg/L	98%	90-110
Nitrogen, Nitrate	8.694	9.036	mg/L	96%	90-110

Type: Matrix Spike Lab ID: QC893030 Batch: 255483

Matrix (Source ID): Water (435521-002) Method: EPA 300.0 Prep Method: METHOD

Source Sample

QC893030 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Nitrogen, Nitrite	8.717	ND	9.134	mg/L	95%		80-120	1
Nitrogen, Nitrate	8.989	ND	9.036	mg/L	99%		80-120	1

Type: Matrix Spike Duplicate Lab ID: QC893031 Batch: 255483

Matrix (Source ID): Water (435521-002) Method: EPA 300.0 Prep Method: METHOD

Source

		Sample							RPD	
QC893031 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Nitrogen, Nitrite	9.060	ND	9.134	mg/L	99%		80-120	4	20	1
Nitrogen, Nitrate	9.030	ND	9.036	mg/L	100%		80-120	0	20	1

Type: Matrix Spike Lab ID: QC893104 Batch: 255483

Matrix (Source ID): Water (435521-004) Method: EPA 300.0 Prep Method: METHOD

Source

		Sample						
QC893104 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Nitrogen, Nitrite	8.844	ND	9.134	mg/L	97%		80-120	1
Nitrogen, Nitrate	8.842	ND	9.036	mg/L	98%		80-120	1

Type: Matrix Spike Duplicate Lab ID: QC893105 Batch: 255483

Matrix (Source ID): Water (435521-004) Method: EPA 300.0 Prep Method: METHOD

		Source Sample							RPD	
QC893105 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Nitrogen, Nitrite	8.802	ND	9.134	mg/L	96%		80-120	0	20	1
Nitrogen, Nitrate	8.797	ND	9.036	mg/L	97%		80-120	1	20	1

Type: Blank Lab ID: QC893110 Batch: 255512 Matrix: Water Method: SM 4500-P-E

QC893110 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Orthophosphate as P	ND		mg/L	0.020	11/02/20 17:49	11/02/20 17:49
Orthophosphate as PO4	ND		mg/L	0.060	11/02/20 17:49	11/02/20 17:49

Type: Lab Control Sample Lab ID: QC893111 Batch: 255512

Matrix: Water Method: SM 4500-P-E

QC893111 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Orthophosphate as P	0.4120	0.4000	mg/L	103%	80-120
Orthophosphate as PO4	1.260	1.230	mg/L	102%	80-120

Type: Matrix Spike Lab ID: QC893112 Batch: 255512 Matrix (Source ID): Water (435704-003) Method: SM 4500-P-E

Source Sample QC893112 Analyte Result Result **Spiked** Units Limits DF Recovery Qual Orthophosphate as P 0.8000 75-125 2 0.8060 ND mg/L 99% Orthophosphate as PO4 2.470 ND 2.460 75-125 2 mg/L 99%

Type: Matrix Spike Duplicate Lab ID: QC893113 Batch: 255512

Matrix (Source ID): Water (435704-003) Method: SM 4500-P-E

Source RPD Sample Recovery Lim QC893113 Analyte Result Result Spiked Units Qual Limits **RPD** DF Orthophosphate as P 0.8180 ND 0.8000 mg/L 101% 75-125 20 2 2 Orthophosphate as PO4 2.510 ND 2.460 100% 75-125 2 20 mg/L

Type: Blank Lab ID: QC893231 Batch: 255567

Matrix: Water Method: EPA 350.1 Prep Method: METHOD

 QC893231 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Ammonia-N
 ND
 mg/L
 0.10
 11/03/20
 11/03/20

Type: Lab Control Sample Lab ID: QC893232 Batch: 255567

Matrix: Water Method: EPA 350.1 Prep Method: METHOD

 QC893232 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Ammonia-N
 2.360
 2.500
 mg/L
 94%
 80-120

Type: Matrix Spike Lab ID: QC893233 Batch: 255567

Matrix (Source ID): Water (435704-001) Method: EPA 350.1 Prep Method: METHOD

Source

Sample

QC893233 Analyte Result Result Spiked Units Recovery Qual Limits DF Ammonia-N 2.434 ND 2.500 97% 80-120 mg/L

Type: Matrix Spike Duplicate Lab ID: QC893234 Batch: 255567

Matrix (Source ID): Water (435704-001) Method: EPA 350.1 Prep Method: METHOD

Source

RPD Sample QC893234 Analyte Result Result **Spiked** Units Qual Limits **RPD** Lim DF Recovery Ammonia-N 20 2.466 ND 2.500 mg/L 99% 80-120

Type: Blank Lab ID: QC893237 Batch: 255568

Matrix: Water Method: SM 4500-CL-G

 QC893237 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Chlorine, Total Residual
 ND
 mg/L
 0.10
 11/03/20 13:51
 11/03/20 13:51

Type: Lab Control Sample Lab ID: QC893238 Batch: 255568

Matrix: Water Method: SM 4500-CL-G

QC893238 AnalyteResultSpikedUnitsRecoveryQualLimitsChlorine, Total Residual1.0071.000mg/L101%80-120

Type: Sample Duplicate Lab ID: QC893239 Batch: 255568

Matrix (Source ID): Water (435704-003) Method: SM 4500-CL-G

Source

		Sample				RPD	
QC893239 Analyte	Result	Result	Units	Qual	RPD	Lim	DF
Chlorine, Total Residual	ND	ND	mg/L			20	1

Type: Blank Lab ID: QC893963 Batch: 255852

Matrix: Water Method: SM 4500-P-B5-E

 QC893963 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Phosphorus
 ND
 mg/L
 0.020
 11/06/20
 11/06/20

Type: Lab Control Sample Lab ID: QC893964 Batch: 255852

Matrix: Water Method: SM 4500-P-B5-E

QC893964 AnalyteResultSpikedUnitsRecoveryQualLimitsPhosphorus0.39400.4000mg/L99%80-120

Type: Matrix Spike Lab ID: QC893965 Batch: 255852

Matrix (Source ID): Water (435850-007) Method: SM 4500-P-B5-E

Source

Sample QC893965 Analyte Result Result **Spiked** Units Qual Limits DF Recovery 75-125 20 Phosphorus 14.82 13.92 8.000 mg/L 11%

Type: Matrix Spike Duplicate Lab ID: QC893966 Batch: 255852

Matrix (Source ID): Water (435850-007) Method: SM 4500-P-B5-E

Source

Sample **RPD** QC893966 Analyte Result **RPD** Lim Result Spiked Units Recovery Qual Limits DF 14.58 **Phosphorus** 13.92 8.000 mg/L 8% 75-125 20

Type: Blank Lab ID: QC894753 Batch: 256152

Matrix: Water Method: EPA 351.2 Prep Method: METHOI

Matrix: Water Method: EPA 351.2 Prep Method: METHOD

QC894753 AnalyteResultQualUnitsRLPreparedAnalyzedNitrogen, Total KjeldahlNDmg/L0.2011/13/2011/17/20

Type: Lab Control Sample Lab ID: QC894754 Batch: 256152

Matrix: Water Method: EPA 351.2 Prep Method: METHOD

QC894754 AnalyteResultSpikedUnitsRecoveryQualLimitsNitrogen, Total Kjeldahl2.4402.500mg/L98%90-110

Type: Matrix Spike Lab ID: QC894755 Batch: 256152

Matrix (Source ID): Water (435704-001) Method: EPA 351.2 Prep Method: METHOD

Source

Sample QC894755 Analyte Result Result Spiked Units Recovery Qual Limits DF Nitrogen, Total Kjeldahl 12.60 0.5528 12.50 90-110 2.5 mg/L 96%

Type: Matrix Spike Duplicate Lab ID: QC894756 Batch: 256152

Matrix (Source ID): Water (435704-001) Method: EPA 351.2 Prep Method: METHOD

Source Sample

		Sample							RPD	
QC894756 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Nitrogen, Total Kieldahl	11.45	0.5528	12.50	ma/L	87%	*	90-110	10	20	2.5

Value is outside QC limits

ND Not Detected

Laboratory Job Number 435704
Subcontracted Products
BSK Associates

RDK0015

Invoice: RD00840

Diane Galvan Enthalpy Analytical, Inc. 931 West Barkley Avenue Orange, CA 92868

RE: Report for RDK0015 General - Diane Galvan

Dear Diane Galvan,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 11/3/2020. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

This certificate of analysis shall not be reproduced except in full, without written approval of the laboratory.

If additional clarification of any information is required, please contact your Project Manager, Alejandra I. Montano, at 909-796-2059.

Thank you again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Alejandra I. Montano, Project Coordinator

Accredited in Accordance with NELAP ORELAP #4119-002

Case Narrative

Project and Report Details Invoice Details

Client: Enthalpy Analytical, Inc. Invoice To: Enthalpy Analytical, Inc.

Report To:Diane GalvanInvoice Attn: Montrose Environmental GroupProject #:435704Project PO#: 435704-001/003-PO-0053

Received: 11/03/2020 - 10:20

Report Due: 11/17/2020

Sample Receipt Conditions

Cooler:Default CoolerContainers IntactTemperature on Receipt °C: 2.0COC/Labels Agree

Received On Wet Ice

Packing Material - Bubble Wrap

Packing Material - Foam

Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

None applied

Report Distribution

Recipient(s) Report Format CC:

Diane Galvan FINAL.RPT incomingreports@enthalpy.com

General - Diane Galvan

435704

Certificate of Analysis

Sample ID: RDK0015-01 **Sample Date - Time:** 11/02/2020 - 10:30

Sampled By:ClientMatrix:WaterSample Description:PONDS INLET // 435704-001Sample Type:Grab

BSK Associates Laboratory Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Glyphosate by HPLC									
Glyphosate	EPA 547	ND	25	ug/L	1	ADK0182	11/04/20	11/04/20	
Surrogate: AMPA	EPA 547	95 %	Acceptable	range: 70	-130 %				

General - Diane Galvan

435704

Certificate of Analysis

Sample ID: RDK0015-02 **Sample Date - Time:** 11/02/2020 - 09:30

Sampled By:ClientMatrix:WaterSample Description:POND OUTLET // 435704-002Sample Type:Grab

BSK Associates Laboratory Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Glyphosate by HPLC									
Glyphosate	EPA 547	ND	25	ug/L	1	ADK0182	11/04/20	11/04/20	
Surrogate: AMPA	EPA 547	93 %	Acceptable	range: 70	-130 %				

General - Diane Galvan

435704

Certificate of Analysis

Sample ID: RDK0015-03 **Sample Date - Time:** 11/02/2020 - 08:30

Sampled By:ClientMatrix:WaterSample Description:HAINES CREEK EXIT // 435704-003Sample Type:Grab

BSK Associates Laboratory Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Glyphosate by HPLC									
Glyphosate	EPA 547	ND	25	ug/L	1	ADK0182	11/04/20	11/04/20	
Surrogate: AMPA	EPA 547	95 %	Acceptable	range: 70	-130 %				

BSK Associates Laboratory Fresno

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		EPA 547	- Qua	lity Con	trol						
Batch: ADK0182										Prepare	d: 11/4/2020
Prep Method: EPA 547										Α	nalyst: JNG
Blank (ADK0182-BLK1)											
Glyphosate	ND	25	ug/L							11/04/20	
Surrogate: AMPA	200			200		101	70-130			11/04/20	
Blank Spike (ADK0182-BS1)											
Glyphosate	100	25	ug/L	100	ND	104	70-130			11/04/20	
Surrogate: AMPA	180			200		90	70-130			11/04/20	
Blank Spike Dup (ADK0182-BSD1)											
Glyphosate	110	25	ug/L	100	ND	109	70-130	5	30	11/04/20	
Surrogate: AMPA	180			200		89	70-130			11/04/20	
Matrix Spike (ADK0182-MS1), Source	ce: SDJ0450-01										
Glyphosate	110	25	ug/L	100	ND	112	70-130			11/04/20	
Surrogate: AMPA	190			200		95	70-130			11/04/20	
Matrix Spike Dup (ADK0182-MSD1)	, Source: SDJ0450-01										
Glyphosate	120	25	ug/L	100	ND	116	70-130	4	30	11/04/20	
Surrogate: AMPA	190		-	200		93	70-130			11/04/20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RDK0015 FINAL 11052020 1350

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Field tests are outside the scope of laboratory accreditation and there is no certification available for field testing.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.
- (2) Formerly known as Bis(2-Chloroisopropyl) ether.

Definitions

mg/L: Milligrams/Liter (ppm) MDL: Method Detection Limit MDA95: Min. Detected Activity mg/Kg: Milligrams/Kilogram (ppm) RL: Reporting Limit: DL x Dilution MPN: Most Probable Number μg/L: Micrograms/Liter (ppb) ND: None Detected below MRL/MDL CFU: Colony Forming Unit Micrograms/Kilogram (ppb) pCi/L: PicoCuries per Liter Absent: Less than 1 CFU/100mLs μg/Kg:

 %:
 Percent
 RL Mult:
 RL Multiplier
 Present:
 1 or more CFU/100mLs

 NR:
 Non-Reportable
 MCL:
 Maximum Contaminant Limit
 U:
 The analyte was not detected at or

above the reported sample quantitation

limit

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAP program for the following parameters: **NA**

Certificate of Analysis

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

F	r	2	n	^
г	ı٠	.3	ш	u

State of California - ELAP	1180	State of Hawaii	4021
Los Angeles CSD	9254479	NELAP certified	4021-014
State of Nevada	CA000792020-2	State of Oregon - NELAP	4021-014
EPA - UCMR4	CA00079	State of Washington	C997-20b

Sacramento

State of California - ELAP 2435

San Bernardino

State of California - ELAP 2993 Los Angeles CSD 9254478

NELAP certified 4119-005 State of Oregon - NELAP 4119-005

Vancouver

NELAP certified WA100008-012 State of Oregon - NELAP WA100008-013

State of Washington C824-20

Sample Integrity
BSK Bottles: Yes No Page of

DO	N Dollies. (res into Pag	e or	1_			·	•••.				1 2
	Was temperature within range? Chemistry ≤ 6°C Micro < 8°C	(Yes) No NA	\\ r	Ne ec	re c	orrect contain d for the test	ne	reservatives d?	 Qes	No	NA
COC Info	If samples were taken today, is there evidence	Yes No (NA)) E	Bub	bles	Present VC	As (524.2	/TTHM)?	Yes		NA
-	that chilling has begun? Did all bottles arrive unbroken and intact?	(Yes No				eived? (Che					No No
ŏ	Did all bottle labels agree with COC?	Yes No	_	Was a sufficient amount of sample received? Do samples have a hold time <72 hours?			Ye		Ne		
ပ	Was sodium thiosulfate added to CN sample(s)		1			I notified of					1
	until chlorine was no longer present?	Yes No (NA)	\	PM			By/Time:		Yes	No	(NA
	250ml(A) 500ml(B) 1Liter(C) 40mlVOA(V) 125ml(D)	Checks*	Р	asse	ed?	1-3					
	Bacti Na ₂ S ₂ O ₃			-			1			3/4	111
	None (P)White Cap	_		_			\				
	Cr6 (P) Lt. Green Label/Blue Cap NH4OH(NH4)2SO4 DW		F		F						
lab	Cr6 (P) Pink Label/Blue Cap NH40H(NH4)2SO4 WW	pH 9.3-9.7	F	•	F						
in the	Cr6 (P) Black Label/Blue Cap NH4OH(NH4)2SO4 7199	pH 9.0-9.5	F	,	F		1				
ned	HNO ₃ (P) Red Cap or HCI (P) Purple Cap/Lt. Blue Label			_							
performed	H ₂ SO ₄ (P) or (AG) Yellow Cap/Label	pH < 2	F	•	F						
	NaOH (P) Green Cap	Cl, pH >10	F	•	F						
or are	NaOH + ZnAc (P)	pH > 9	F	•	F						
N/A	Dissolved Oxygen 300ml (g)			=							
ور م ور	None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270										
either	HCI (AG)Lt. Blue Label O&G, Diesel, TCP	-		_					.1.2		
are	Ascorbic, EDTA, KH ₂ Ct (AG) ^{Pink Label} 525			-					111	h	0
tles R	Na ₂ SO ₃ 250mL (AG) ^{Neon Green Label} 515	=		_				1	1000	PU	
Bottles Received rine checks are either	Na ₂ S ₂ O ₃ 1 Liter (Brown P) 549			-	-86				.h		
Bo l	Na ₂ S ₂ O ₃ (AG) ^{Blue Label} 548, THM, 524			-	-0				(/ ,		
chlo	Na ₂ S ₂ O ₃ (CG) ^{Blue Label} 504, 505, 547					IV					
Bc preservation/chlorin	Na ₂ S ₂ O ₃ + MCAA (CG) ^{Orange Label} 531	pH < 3	F)	F						
erva	NH ₄ CI (AG) ^{Purple Label} 552										
bres	EDA (P) or (AG) Brown Label DBPs	_		-	-)						
Sus				-			H. s.				
me	Buller pri 4 (CG)	_		_	-						
4	H ₃ PO ₄ (CG) ^{Salmon Label}		15.50								
2	Trizma – EPA 537.1 - Field Blank Required										
	Other:		8111						in the A	+	
	Asbestos 1L (P) w/ Foil / LL Metals Bottle			, 22			10 5 8				12 17 5
	Bottled Water Clear Glass 125mL / 250mL / 500mL / 1 Liter								ALIEN INVENT	+	
	Solids: Brass / Steel / Plastic Bag								retrife		91 1
		te/Time/Initials	Depart			Contain	er Pre	servative	Date/Ti	me/l	nitials
Split	S P		s	Р				\			
S	SP		S	Р							
	*Preservation check completed by lab performance	ming analysis.		,	/	Indicates E	Blanks Re	eceived			
Comments			50)4 ₋				_ 537.1 Method:		624 _	

Enthalpy Ana Orange, CA 9 (714) 771-69(

RDK0015 Entha6900 11/03/2020

Subcontract Laboratory:

BSK Associates

1414 Stanislaus Street

Fresno, CA 93706

ATTN: Alejandra Montano

PO#: TBD

Results Due: Standard TAT

Report Level: II Report To: RL

Notes:

HAINES CREEK EXIT

EDDs: Standard Excel EDD

02-NOV-2020 08:30

435704-003

-2	(714) 771-69(
\$5°	Enthalpy Order: E
0.0	PM: Diane Galvan
0 0	Email: diane.galvan@
J. San	CC: incomingreport
The John State of the State of	Phone: 714-771-9928
1	

enthalpy.com CC: incomingreports@enthalpy.com

Enthalpy Order: EO-435704

Sample ID	Collected	Lab ID	# Cont.	Matrix	Analysis Requested	Comment	
PONDS INLET	02-NOV-2020 10:30	435704-001	1	Water	EPA 547 Glyphosate		
POND OUTLET	02-NOV-2020 09:30	435704-002	1	Water	EPA 547 Glyphosato		

EPA 547 Glyphosate

Water

Notes:	Relinquished By:	Received By:
	Date: 10/ 11/12 3 10	ગુરૂ Date:
	Date:	Date:
		1/2 veronila
	Date:	Date: 11-3-7000 10:70

Laboratory Job Number 435704
Subcontracted Products
Eurofins CalScience

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience LLC 7440 Lincoln Way Garden Grove, CA 92841 Tel: (714)895-5494

Laboratory Job ID: 570-42868-1 Client Project/Site: 435704

For:

Enthalpy Analytical LLC 931 W. Barkley Ave Orange, California 92868

Attn: Diane Galvan

Authorized for release by: 11/12/2020 2:23:05 PM Sheila Luu, Project Mgmt. Assistant Sheila.Luu@eurofinset.com

Designee for

Xuan Dang, Project Manager I (714)895-5494

Xuan.Dang@eurofinset.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

<u>/</u>

9

10

12

14

Ta	hl	6	of	Co	nte	nts
ıa	VI		VI.	UU		1113

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

Definitions/Glossary

Client: Enthalpy Analytical LLC Job ID: 570-42868-1

Project/Site: 435704

Qualifiers

GC Semi VOA

Qualifier Qualifier Description

p The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
p	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

(

7

ŏ

10

13

Case Narrative

Client: Enthalpy Analytical LLC

Project/Site: 435704

Job ID: 570-42868-1

Job ID: 570-42868-1

Laboratory: Eurofins Calscience LLC

Narrative

Job Narrative 570-42868-1

Comments

No additional comments.

Receipt

The samples were received on 11/4/2020 12:27 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.2° C.

GC Semi VOA

Method 8141A: The closing continuing calibration verification (CCV) associated with batch 570-107395 recovered above the upper control limit for Naled. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8141A: The continuing calibration verification (CCV) associated with batch 570-107395 recovered above the upper control limit for < Azinphos-methyl, Bolstar, Chlorpyrifos, Coumaphos, Demeton-o/s, Diazinon, Dichlorvos, Disulfoton, Ethoprop, Fensulfothion, Fenthion, Merphos, Methyl parathion, Mevinphos, Naled, Phorate, Ronnel, Stirophos, Tokuthion, Trichloronate and Tributylphosphate>. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 570-107177. LCS/LCSD was performed to meet QC requirements.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

O

6

0

4.0

4.0

13

14

Detection Summary

Client: Enthalpy Analytical LLC Job ID: 570-42868-1

Project/Site: 435704

Client Sample ID: PONDS INLET Lab Sample ID: 570-42868-1

No Detections.

Client Sample ID: PONDS OUTLET Lab Sample ID: 570-42868-2

No Detections.

Client Sample ID: HAINES CREEK EXIT Lab Sample ID: 570-42868-3

No Detections.

5

J

7

8

46

11

13

14

Client: Enthalpy Analytical LLC Job ID: 570-42868-1

Project/Site: 435704

Tributyl phosphate

Method: 8141A - Organophosphorous Pesticides (GC)

Client Sample ID: PONDS INLET Lab Sample ID: 570-42868-1 Date Collected: 11/02/20 10:30 **Matrix: Water** Date Received: 11/04/20 12:27 RL Analyte Result Qualifier Unit D Prepared Analyzed Dil Fac Azinphos-methyl ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 ND Bolstar 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 Chlorpyrifos ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 1 Coumaphos ND 0.0048 11/05/20 07:24 11/05/20 22:14 mg/L Demeton-o/s ND 0.0095 mg/L 11/05/20 07:24 11/05/20 22:14 Diazinon ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 Dichlorvos ND 0.0048 11/05/20 07:24 11/05/20 22:14 mg/L Disulfoton ND 0.0095 11/05/20 07:24 11/05/20 22:14 mg/L Ethoprop ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 Fensulfothion ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 Fenthion ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 Merphos ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 1 Methyl parathion ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 Mevinphos ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 Naled ND 11/05/20 07:24 11/05/20 22:14 0.038 mg/L Phorate 11/05/20 07:24 11/05/20 22:14 ND 0.0048 mg/L Ronnel ND 0.0048 11/05/20 07:24 11/05/20 22:14 mg/L Stirophos ND 0.019 mg/L 11/05/20 07:24 11/05/20 22:14 Tokuthion ND 0.0048 11/05/20 07:24 11/05/20 22:14 mg/L Trichloronate ND 0.0048 mg/L 11/05/20 07:24 11/05/20 22:14 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

Client Sample ID: PONDS OUTLET Lab Sample ID: 570-42868-2 Date Collected: 11/02/20 09:30 **Matrix: Water**

35 - 151

82

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Azinphos-methyl	ND ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Bolstar	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Chlorpyrifos	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Coumaphos	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Demeton-o/s	ND	0.0097	mg/L		11/05/20 07:24	11/05/20 23:01	1
Diazinon	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Dichlorvos	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Disulfoton	ND	0.0097	mg/L		11/05/20 07:24	11/05/20 23:01	1
Ethoprop	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Fensulfothion	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Fenthion	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Merphos	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Methyl parathion	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Mevinphos	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Naled	ND	0.039	mg/L		11/05/20 07:24	11/05/20 23:01	1
Phorate	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Ronnel	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Stirophos	ND	0.019	mg/L		11/05/20 07:24	11/05/20 23:01	1
Tokuthion	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1
Trichloronate	ND	0.0049	mg/L		11/05/20 07:24	11/05/20 23:01	1

11/05/20 07:24 11/05/20 22:14

Client Sample Results

Client: Enthalpy Analytical LLC Job ID: 570-42868-1

Project/Site: 435704

Method: 8141A - Organophosphorous Pesticides (GC) (Continued)

Surrogate	%Recovery Qu	ualifier Limits		Prepared	Analyzed	Dil Fac
Tributyl phosphate	85	35 - 151		11/05/20 07:24	11/05/20 23:01	1
Client Sample ID: HAIN	NES CREEK EXIT			Lab San	nple ID: 570-4	2868-3
Date Collected: 11/02/2					•	: Water
Date Received: 11/04/2						
Analyte	Result Qu	ıalifier RL	Unit	D Prepared	Analyzed	Dil Fac
Azinphos-methyl	ND ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Bolstar	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Chlorpyrifos	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Coumaphos	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Demeton-o/s	ND	0.0098	mg/L	11/05/20 07:24	11/05/20 23:49	1
Diazinon	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Dichlorvos	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Disulfoton	ND	0.0098	mg/L	11/05/20 07:24	11/05/20 23:49	1
Ethoprop	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Fensulfothion	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Fenthion	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Merphos	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Methyl parathion	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Mevinphos	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Naled	ND	0.039	mg/L	11/05/20 07:24	11/05/20 23:49	1
Phorate	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Ronnel	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Stirophos	ND	0.020	mg/L	11/05/20 07:24	11/05/20 23:49	1
Tokuthion	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Trichloronate	ND	0.0049	mg/L	11/05/20 07:24	11/05/20 23:49	1
Surrogate	%Recovery Qu	ıalifier Limits		Prepared	Analyzed	Dil Fac
Tributyl phosphate		35 - 151		11/05/20 07:24	11/05/20 23:49	

4

_

J

7

_

10

12

1 /

Surrogate Summary

Client: Enthalpy Analytical LLC Project/Site: 435704 Job ID: 570-42868-1

Method: 8141A - Organophosphorous Pesticides (GC)

Prep Type: Total/NA **Matrix: Water**

		Percent Surrogate Recovery (Acceptance Limits)
	TBPH1	
Client Sample ID	(35-151)	
PONDS INLET	82	
PONDS OUTLET	85	
HAINES CREEK EXIT	85	
Lab Control Sample	92 p	
Lab Control Sample Dup	87 p	
Method Blank	88	
	PONDS INLET PONDS OUTLET HAINES CREEK EXIT Lab Control Sample Lab Control Sample Dup	Client Sample ID (35-151) PONDS INLET 82 PONDS OUTLET 85 HAINES CREEK EXIT 85 Lab Control Sample 92 p Lab Control Sample Dup 87 p

Client: Enthalpy Analytical LLC Job ID: 570-42868-1

Project/Site: 435704

Method: 8141A - Organophosphorous Pesticides (GC)

Lab Sample ID: MB 570-107177/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 107395 Prep Batch: 107177**

	MB N	IB						
Analyte	Result Q	ualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Azinphos-methyl	ND ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Bolstar	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Chlorpyrifos	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Coumaphos	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Demeton-o/s	ND	0.0	010	mg/L		11/05/20 07:24	11/05/20 17:29	1
Diazinon	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Dichlorvos	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Disulfoton	ND	0.0	010	mg/L		11/05/20 07:24	11/05/20 17:29	1
Ethoprop	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Fensulfothion	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Fenthion	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Merphos	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Methyl parathion	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Mevinphos	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Naled	ND	0.0	040	mg/L		11/05/20 07:24	11/05/20 17:29	1
Phorate	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Ronnel	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Stirophos	ND	0.0	020	mg/L		11/05/20 07:24	11/05/20 17:29	1
Tokuthion	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1
Trichloronate	ND	0.0	050	mg/L		11/05/20 07:24	11/05/20 17:29	1

MB MB

%Recovery Qualifier Limits Surrogate Prepared Analyzed Tributyl phosphate 88 35 - 151 11/05/20 07:24 11/05/20 17:29

Lab Sample ID: LCS 570-107177/2-A

Matrix: Water

Analysis Batch: 107395

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 107177

Analysis Batch: 107395	Spike	I CS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Azinphos-methyl	0.0400	0.03464		mg/L	_ =	87	61 - 174
Bolstar	0.0400	0.03408	•	mg/L		85	69 - 141
Chlorpyrifos	0.0400	0.03674	p	mg/L		92	57 - 149
Coumaphos	0.0400	0.03643	р	mg/L		91	59 - 163
Diazinon	0.0400	0.03845	р	mg/L		96	62 - 154
Disulfoton	0.0400	0.03726	р	mg/L		93	68 - 145
Ethoprop	0.0400	0.03984	р	mg/L		100	67 - 147
Fensulfothion	0.0400	0.03949	p	mg/L		99	69 - 167
Fenthion	0.0400	0.03469	р	mg/L		87	69 - 147
Merphos	0.0400	0.04817	р	mg/L		120	44 - 180
Methyl parathion	0.0400	0.03770	р	mg/L		94	62 - 153
Phorate	0.0400	0.03732	p	mg/L		93	62 - 153
Ronnel	0.0400	0.03522	р	mg/L		88	61 - 145
Stirophos	0.0400	0.03739	р	mg/L		93	53 - 180
Tokuthion	0.0400	0.03426	p	mg/L		86	63 - 135
Trichloronate	0.0400	0.03828	р	mg/L		96	54 - 157

LCS	LCS	
coverv	Qualifier	

%Re Limits Surrogate 92 p 35 - 151 Tributyl phosphate

Eurofins Calscience LLC

QC Sample Results

Client: Enthalpy Analytical LLC Job ID: 570-42868-1

Project/Site: 435704

Matrix: Water

Analysis Batch: 107395

Lab Sample ID: LCSD 570-107177/3-A

Method: 8141A - Organophosphorous Pesticides (GC)

Client Sample ID: Lab Control Sample Dup

Prep	Type: T	otal/NA
Prep	Batch:	107177
%Rec		RPD

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Azinphos-methyl	0.0400	0.03258	p	mg/L		81	61 - 174	6	30
Bolstar	0.0400	0.03324	p	mg/L		83	69 - 141	2	30
Chlorpyrifos	0.0400	0.03556	p	mg/L		89	57 - 149	3	30
Coumaphos	0.0400	0.03542	р	mg/L		89	59 - 163	3	30
Diazinon	0.0400	0.03728	p	mg/L		93	62 - 154	3	30
Disulfoton	0.0400	0.03680	p	mg/L		92	68 - 145	1	30
Ethoprop	0.0400	0.03738	р	mg/L		93	67 - 147	6	30
Fensulfothion	0.0400	0.03857	p	mg/L		96	69 - 167	2	30
Fenthion	0.0400	0.03454	р	mg/L		86	69 - 147	0	30
Merphos	0.0400	0.04780	р	mg/L		120	44 - 180	1	30
Methyl parathion	0.0400	0.03860	р	mg/L		96	62 - 153	2	30
Phorate	0.0400	0.03679	р	mg/L		92	62 - 153	1	30
Ronnel	0.0400	0.03502	р	mg/L		88	61 - 145	1	30
Stirophos	0.0400	0.03655	р	mg/L		91	53 - 180	2	30
Tokuthion	0.0400	0.03361	р	mg/L		84	63 - 135	2	30
Trichloronate	0.0400	0.03773	р	mg/L		94	54 - 157	1	30

LCSD	LCSD

Surrogate	%Recovery Qualifier	Limits
Tributyl phosphate	87 n	35 151

QC Association Summary

Job ID: 570-42868-1

Client: Enthalpy Analytical LLC Project/Site: 435704

GC Semi VOA

Prep Batch: 107177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-42868-1	PONDS INLET	Total/NA	Water	3510C	
570-42868-2	PONDS OUTLET	Total/NA	Water	3510C	
570-42868-3	HAINES CREEK EXIT	Total/NA	Water	3510C	
MB 570-107177/1-A	Method Blank	Total/NA	Water	3510C	
LCS 570-107177/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 570-107177/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 107395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-42868-1	PONDS INLET	Total/NA	Water	8141A	107177
570-42868-2	PONDS OUTLET	Total/NA	Water	8141A	107177
570-42868-3	HAINES CREEK EXIT	Total/NA	Water	8141A	107177
MB 570-107177/1-A	Method Blank	Total/NA	Water	8141A	107177
LCS 570-107177/2-A	Lab Control Sample	Total/NA	Water	8141A	107177
LCSD 570-107177/3-A	Lab Control Sample Dup	Total/NA	Water	8141A	107177

Lab Chronicle

Client: Enthalpy Analytical LLC Job ID: 570-42868-1

Project/Site: 435704

Client Sample ID: PONDS INLET

Lab Sample ID: 570-42868-1 Date Collected: 11/02/20 10:30 **Matrix: Water**

Date Received: 11/04/20 12:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1050.7 mL	10 mL	107177	11/05/20 07:24	OAJ3	ECL 1
Total/NA	Analysis	8141A		1			107395	11/05/20 22:14	UHHN	ECL 1
	Instrumer	nt ID: GC68								

Client Sample ID: PONDS OUTLET

Date Collected: 11/02/20 09:30

Date Received: 11/04/20 12:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1030.7 mL	10 mL	107177	11/05/20 07:24	OAJ3	ECL 1
Total/NA	Analysis	8141A		1			107395	11/05/20 23:01	UHHN	ECL 1
Total/NA	,	8141A		1			107395	11/05/20 23:01	UH	HN

Client Sample ID: HAINES CREEK EXIT

Date Collected: 11/02/20 08:30

Date Received: 11/04/20 12:27

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1019.7 mL	10 mL	107177	11/05/20 07:24	OAJ3	ECL 1
Total/NA	Analysis	8141A		1			107395	11/05/20 23:49	UHHN	ECL 1
	Instrumer	nt ID: GC68								

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Matrix: Water

Matrix: Water

Lab Sample ID: 570-42868-2

Lab Sample ID: 570-42868-3

Eurofins Calscience LLC

Accreditation/Certification Summary

Client: Enthalpy Analytical LLC Job ID: 570-42868-1

Project/Site: 435704

Laboratory: Eurofins Calscience LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	Los Angeles County Sanitation Districts	10109	09-30-21
California	SCAQMD LAP	17LA0919	11-30-20
California	State	2944	09-30-21
Nevada	State	CA00111	07-31-21
Oregon	NELAP	CA300001	01-29-21
USDA	US Federal Programs	P330-20-00034	02-10-23
Washington	State	C916-18	10-11-21

._____.

3

4

5

9

11

12

14

Method Summary

Client: Enthalpy Analytical LLC

Project/Site: 435704

Job ID: 570-42868-1

Method	Method Description	Protocol	Laboratory
8141A	Organophosphorous Pesticides (GC)	SW846	ECL 1
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	ECL 1

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Sample Summary

Client: Enthalpy Analytical LLC Project/Site: 435704

Job ID: 570-42868-1

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset I
70-42868-1	PONDS INLET	Water	11/02/20 10:30	11/04/20 12:27	
70-42868-2	PONDS OUTLET	Water	11/02/20 09:30	11/04/20 12:27	
70-42868-3	HAINES CREEK EXIT	Water	11/02/20 08:30	11/04/20 12:27	

Enthalpy Analytical - Orange Orange, CA 92868

(714) 771-6900 / Fax: (510) 486-0532

Enthalpy Order: EO-435704

PM: Diane Galvan

Email: diane.galvan@enthalpy.com CC: incomingreports@enthalpy.com

Phone: 714-771-9928

ATTN: Xuan Dang PO#: TBD

Subcontract Laboratory: Eurofins CalScience

7440 Lincoln Way

Results Due: Standard TAT

Garden Grove, CA 92841-1432

Report Level: II Report To: RL

EDDs: Excel EDD

Notes:

Sample ID	Collected	Lab ID	# Cont.	Matrix	Analysis Requested	Comment
PONDS INLET	02-NOV-2020 10:30	435704-001	2	Water	Organophosphorus Pesticides	Include chloryrifos
POND OUTLET	02-NOV-2020 09:30	435704-002	2	Water	Organophosphorus Pesticides	Include chloryrifos
HAINES CREEK EXIT	02-NOV-2020 08:30	435704-003	2	Water	Organophosphorus Pesticides	Include chloryrifos

Notes:	Relinquished By	Received By:
		- 7
	Date: 11/4/762 12	27 Date: 1/14/20 1227
	Date:	Date:
	Date:	Date:

3.0/2.2566

Login Sample Receipt Checklist

Client: Enthalpy Analytical LLC Job Number: 570-42868-1

Login Number: 42868 List Source: Eurofins Calscience

List Number: 1 Creator: Le, Danny

Creator. Le, Danny		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

7

g

12

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 436364

Report Level: II

Report Date: 11/25/2020

Analytical Report *prepared for:*

Heather Franklin Chambers Group 5 Hutton Centre Drive Suite 750 Santa Ana, CA 92707

Location: Big Tujunga

Authorized for release by:

Diane Galvan, Project Manager

rane Salva

714-771-9928

diane.galvan@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Heather Franklin Chambers Group 5 Hutton Centre Drive

Suite 750

Santa Ana, CA 92707

Lab Job #: 436364

Location: Big Tujunga

Date Received: 11/13/20

Sample ID	Lab ID	Collected	Matrix
PONDS INLET	436364-001	11/13/20 10:05	Water
PONDS OUTLET	436364-002	11/13/20 09:50	Water
HAINES CREEK EXIT	436364-003	11/13/20 09:10	Water

Sample Receipt Temp: 12:01 pm Turn Around Time (rush by advanced notice only) Test Instructions / Comments (lab use only) Custom TAT: 3 Date / Time 3 Day: S(18/18/1) ζ $4 = H_2SO_4$ 5 = NaOH 6 = Other $Na_2S_2O_3$ 2 = HCl 3 = HNO₃ 5 Dау: 1 Day: Preservatives: Company / Title **Analysis Request** = ≷ Standard: 2 Day: SW = Swab T = Tissue WP = Wipe O = Other Chambers Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water Organochlorine soppitsod Chain of Custody Record **オラとコミガ** Pres. Matrix: A = Air S = Soil/Solid Container No. / Size PROJECT INFORMATION Married asset **Print Name** \U\W\qq M. Gornaz tho and Matrix 3 3 Dig Sampling Time 1805/ 0560 00/19 Sampled By: Proj. Name: Global ID: Address: Quote #: Proj. #: P.O. #: 11/13/2020 11/13/2020 11/12/2020 931 W. Barkley Avenue, Orange, CA 92868 Sampling Enthalpy Analytical - Orange Signature infrankling chembersprouping com Date とう Phone 714-771-6900 **CUSTOMER INFORMATION** Chambers Group Herther Franklin 920-021-0216 Haines Creek GX11 Sample ID ナシナ Ponds Inlet Relinquished By: Relinquished By: Relinquished By: Received By: Received By: ³ Received By: Ponds Report To: Company: Address: Email: Phone: Fax: 10 2 9 ∞ თ

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: CHAMBULS GROUP INC.	Project: BIG TUJU	NGA		
Client: CHAMBULS GLOUP はつ. Date Received: パクラ	Sampler's Name Present:	Yes	No	
Section 2				
Sample(s) received in a cooler? Yes, How many? 1	No (skip section 2)	Sample	Temp (°C)	
Sample Temp (°C), One from each cooler: #1: 5.7	#2. #3.	# 1 1•	No Coolei	
(Acceptance range is $< 6^{\circ}$ C but not frozen (for Microbiology samples, acceptan	ce range is < 10°C but not frozen). I	t is acceptable	for sample	– es collected
the same day as sample receipt to have a higher temperatur				
Shipping Information:				
Section 3				
Was the cooler packed with: lce lce Packs	Bubble Wrap Styre	ofoam		
Paper None	Other			
Paper None Cooler Temp (°C): #1: 3.8 #2:		 _#4:		
				1
Section 4		YES	NO	N/A
Was a COC received?				
Are sample IDs present?				
Are sampling dates & times present?				
Is a relinquished signature present?				
Are the tests required clearly indicated on the COC?		/		
Are custody seals present?				
If custody seals are present, were they intact?	.			
Are all samples sealed in plastic bags? (Recommended for				
Did all samples arrive intact? If no, indicate in Section 4 be	Plow.			
Did all bottle labels agree with COC? (ID, dates and times)				
Were the samples collected in the correct containers for t	<u>`</u>			
Are the containers labeled with the correct preserva				
Is there headspace in the VOA vials greater than 5-6 mm in				
Was a sufficient amount of sample submitted for the requ	estea tests?			
Section 5 Explanations/Comments				
	were t			
Section 6	-			
For discrepancies, how was the Project Manager notified?	Vorbal PM Initials	Data/Tima		
nor discrepancies, now was the Project Manager nothieu:	Email (email sent to)			
Project Manager's response:	Linaii (emaii sent to)	011)	·	
r roject manager s response.				
<u> </u>	`			
Completed By:	Date: ((/(3/2)		•	

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209

www.enthalpy.com/socal

Sample Acceptance Checklist – Rev 4, 8/8/2017

Analysis Results for 436364

Heather Franklin Chambers Group 5 Hutton Centre Drive Suite 750 Santa Ana, CA 92707

Lab Job #: 436364 Location: Big Tujunga Date Received: 11/13/20

Sample ID: PONDS INLET Lab ID: 436364-001 Collected: 11/13/20 10:05

Matrix: Water

436364-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 608									
Prep Method: EPA 3510C									
alpha-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
beta-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
gamma-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
delta-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Heptachlor	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Aldrin	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Heptachlor epoxide	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan I	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Dieldrin	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDE	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan II	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan sulfate	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDD	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin aldehyde	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin ketone	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDT	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Methoxychlor	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Toxaphene	ND		ug/L	1.9	0.94	256344	11/14/20	11/16/20	KTD
Chlordane (Technical)	ND		ug/L	0.9	0.94	256344	11/14/20	11/16/20	KTD
Surrogates				Limits					
TCMX	106%		%REC	14-120	0.94	256344	11/14/20	11/16/20	KTD
Decachlorobiphenyl	144%	*	%REC	20-120	0.94	256344	11/14/20	11/16/20	KTD
Method: EPA 608									
Prep Method: EPA 3510C									
Aroclor-1016	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1221	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1232	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1242	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1248	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1254	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1260	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Surrogates				Limits					
TCMX (PCB)	111%		%REC	25-120	0.94	256344	11/14/20	11/16/20	KTD

Analysis Results for 436364

436364-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Decachlorobiphenyl (PCB)	136%	*	%REC	18-126	0.94	256344	11/14/20	11/16/20	KTD

Sample ID: PONDS OUTLET Lab ID: 436364-002 Collected: 11/13/20 09:50

Matrix: Water

436364-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 608									
Prep Method: EPA 3510C									
alpha-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
beta-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
gamma-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
delta-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Heptachlor	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Aldrin	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Heptachlor epoxide	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan I	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Dieldrin	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDE	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan II	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan sulfate	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDD	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin aldehyde	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin ketone	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDT	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Methoxychlor	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Toxaphene	ND		ug/L	1.9	0.94	256344	11/14/20	11/16/20	KTD
Chlordane (Technical)	ND		ug/L	0.9	0.94	256344	11/14/20	11/16/20	KTD
Surrogates				Limits					
TCMX	100%		%REC	14-120	0.94	256344	11/14/20	11/16/20	KTD
Decachlorobiphenyl	142%	*	%REC	20-120	0.94	256344	11/14/20	11/16/20	KTD
Method: EPA 608 Prep Method: EPA 3510C									
Aroclor-1016	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1221	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1232	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1242	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1248	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1254	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1260	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Surrogates				Limits					
TCMX (PCB)	102%		%REC	25-120	0.94	256344	11/14/20	11/16/20	KTD
Decachlorobiphenyl (PCB)	132%	*	%REC	18-126	0.94	256344	11/14/20	11/16/20	KTD

Analysis Results for 436364

Sample ID: HAINES CREEK EXIT Lab ID: 436364-003 Collected: 11/13/20 09:10

Matrix: Water

436364-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 608									
Prep Method: EPA 3510C									
alpha-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
beta-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
gamma-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
delta-BHC	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Heptachlor	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Aldrin	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Heptachlor epoxide	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan I	ND		ug/L	0.05	0.94	256344	11/14/20	11/16/20	KTD
Dieldrin	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDE	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan II	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endosulfan sulfate	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDD	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin aldehyde	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Endrin ketone	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
4,4'-DDT	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Methoxychlor	ND		ug/L	0.09	0.94	256344	11/14/20	11/16/20	KTD
Toxaphene	ND		ug/L	1.9	0.94	256344	11/14/20	11/16/20	KTD
Chlordane (Technical)	ND		ug/L	0.9	0.94	256344	11/14/20	11/16/20	KTD
Surrogates				Limits					
TCMX	98%		%REC	14-120	0.94	256344	11/14/20	11/16/20	KTD
Decachlorobiphenyl	138%	*	%REC	20-120	0.94	256344	11/14/20	11/16/20	KTD
Method: EPA 608 Prep Method: EPA 3510C									
Aroclor-1016	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1221	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1232	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1242	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1248	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1254	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Aroclor-1260	ND		ug/L	0.47	0.94	256344	11/14/20	11/16/20	KTD
Surrogates				Limits					
TCMX (PCB)	103%		%REC	25-120	0.94	256344	11/14/20	11/16/20	KTD
Decachlorobiphenyl (PCB)	130%	*	%REC	18-126	0.94	256344	11/14/20	11/16/20	KTD

Value is outside QC limits

ND Not Detected

Type: Blank Lab ID: QC895279 Batch: 256344

Matrix: Water Method: EPA 608 Prep Method: EPA 3510C

QC895279 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
alpha-BHC	ND		ug/L	0.05	11/14/20	11/16/20
beta-BHC	ND		ug/L	0.05	11/14/20	11/16/20
gamma-BHC	ND		ug/L	0.05	11/14/20	11/16/20
delta-BHC	ND		ug/L	0.05	11/14/20	11/16/20
Heptachlor	ND		ug/L	0.05	11/14/20	11/16/20
Aldrin	ND		ug/L	0.05	11/14/20	11/16/20
Heptachlor epoxide	ND		ug/L	0.05	11/14/20	11/16/20
Endosulfan I	ND		ug/L	0.05	11/14/20	11/16/20
Dieldrin	ND		ug/L	0.1	11/14/20	11/16/20
4,4'-DDE	ND		ug/L	0.1	11/14/20	11/16/20
Endrin	ND		ug/L	0.1	11/14/20	11/16/20
Endosulfan II	ND		ug/L	0.1	11/14/20	11/16/20
Endosulfan sulfate	ND		ug/L	0.1	11/14/20	11/16/20
4,4'-DDD	ND		ug/L	0.1	11/14/20	11/16/20
Endrin aldehyde	ND		ug/L	0.1	11/14/20	11/16/20
Endrin ketone	ND		ug/L	0.1	11/14/20	11/16/20
4,4'-DDT	ND		ug/L	0.1	11/14/20	11/16/20
Methoxychlor	ND		ug/L	0.1	11/14/20	11/16/20
Toxaphene	ND		ug/L	2.0	11/14/20	11/16/20
Chlordane (Technical)	ND		ug/L	1.0	11/14/20	11/16/20
Surrogates				Limits		
TCMX	79%		%REC	14-120	11/14/20	11/16/20
Decachlorobiphenyl	130%	*	%REC	20-120	11/14/20	11/16/20
Aroclor-1016	ND		ug/L	0.50	11/14/20	11/16/20
Aroclor-1221	ND		ug/L	0.50	11/14/20	11/16/20
Aroclor-1232	ND		ug/L	0.50	11/14/20	11/16/20
Aroclor-1242	ND		ug/L	0.50	11/14/20	11/16/20
Aroclor-1248	ND		ug/L	0.50	11/14/20	11/16/20
Aroclor-1254	ND		ug/L	0.50	11/14/20	11/16/20
Aroclor-1260	ND		ug/L	0.50	11/14/20	11/16/20
Surrogates				Limits		
TCMX (PCB)	83%		%REC	25-120	11/14/20	11/16/20
Decachlorobiphenyl (PCB)	126%		%REC	18-126	11/14/20	11/16/20

Type: Lab Control Sample Lab ID: QC895280 Batch: 256344

Matrix: Water Method: EPA 608 Prep Method: EPA 3510C

QC895280 Analyte	Result	Spiked	Units	Recovery Qual	Limits
alpha-BHC	0.4508	0.5000	ug/L	90%	53-120
beta-BHC	0.5495	0.5000	ug/L	110%	59-120
gamma-BHC	0.4636	0.5000	ug/L	93%	54-120
delta-BHC	0.4989	0.5000	ug/L	100%	58-120
Heptachlor	0.3278	0.5000	ug/L	66%	49-120
Aldrin	0.3982	0.5000	ug/L	80%	47-120
Heptachlor epoxide	0.4329	0.5000	ug/L	87%	53-120
Endosulfan I	0.4545	0.5000	ug/L	91%	56-120
Dieldrin	0.4543	0.5000	ug/L	91%	55-120
4,4'-DDE	0.4312	0.5000	ug/L	86%	55-120
Endrin	0.4725	0.5000	ug/L	94%	57-120
Endosulfan II	0.4735	0.5000	ug/L	95%	58-120
Endosulfan sulfate	0.4700	0.5000	ug/L	94%	56-120
4,4'-DDD	0.4099	0.5000	ug/L	82%	53-120
Endrin aldehyde	0.3849	0.5000	ug/L	77%	45-120
Endrin ketone	0.4801	0.5000	ug/L	96%	61-120
4,4'-DDT	0.4780	0.5000	ug/L	96%	58-120
Methoxychlor	0.4701	0.5000	ug/L	94%	54-120
Surrogates					
TCMX	0.3951	0.5000	ug/L	79%	14-120
Decachlorobiphenyl	0.5744	0.5000	ug/L	115%	20-120

Type: Lab Control Sample Duplicate Lab ID: QC895281 Batch: 256344

Matrix: Water Method: EPA 608 Prep Method: EPA 3510C

								RPD
QC895281 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim
alpha-BHC	0.4574	0.5000	ug/L	91%		53-120	1	20
beta-BHC	0.5786	0.5000	ug/L	116%		59-120	5	20
gamma-BHC	0.4718	0.5000	ug/L	94%		54-120	2	20
delta-BHC	0.5085	0.5000	ug/L	102%		58-120	2	20
Heptachlor	0.3634	0.5000	ug/L	73%		49-120	10	20
Aldrin	0.3895	0.5000	ug/L	78%		47-120	2	20
Heptachlor epoxide	0.4256	0.5000	ug/L	85%		53-120	2	20
Endosulfan I	0.4480	0.5000	ug/L	90%		56-120	1	20
Dieldrin	0.4425	0.5000	ug/L	89%		55-120	3	20
4,4'-DDE	0.4196	0.5000	ug/L	84%		55-120	3	20
Endrin	0.4628	0.5000	ug/L	93%		57-120	2	20
Endosulfan II	0.4661	0.5000	ug/L	93%		58-120	2	20
Endosulfan sulfate	0.4605	0.5000	ug/L	92%		56-120	2	20
4,4'-DDD	0.3940	0.5000	ug/L	79%		53-120	4	20
Endrin aldehyde	0.3754	0.5000	ug/L	75%		45-120	3	20
Endrin ketone	0.4743	0.5000	ug/L	95%		61-120	1	20
4,4'-DDT	0.4554	0.5000	ug/L	91%		58-120	5	20
Methoxychlor	0.4452	0.5000	ug/L	89%		54-120	5	20
Surrogates								
TCMX	0.4165	0.5000	ug/L	83%		14-120		
Decachlorobiphenyl	0.5415	0.5000	ug/L	108%		20-120		

Type: Lab Control Sample Lab ID: QC895282 Batch: 256344

Matrix: Water Method: EPA 608 Prep Method: EPA 3510C

QC895282 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Aroclor-1016	5.056	5.000	ug/L	101%		36-143
Aroclor-1260	5.937	5.000	ug/L	119%		31-153
Surrogates						
TCMX (PCB)	0.4687	0.5000	ug/L	94%		25-120
Decachlorobiphenyl (PCB)	0.6469	0.5000	ug/L	129%	*	18-126

Type: Lab Control Sample Duplicate Lab ID: QC895283 Batch: 256344

Matrix: Water Method: EPA 608 Prep Method: EPA 3510C

							RPD
QC895283 Analyte	Result	Spiked	Units	Recovery Qu	al Limits	RPD	Lim
Aroclor-1016	5.494	5.000	ug/L	110%	36-143	8	39
Aroclor-1260	6.359	5.000	ug/L	127%	31-153	7	20
Surrogates							
TCMX (PCB)	0.5160	0.5000	ug/L	103%	25-120		
Decachlorobiphenyl (PCB)	0.6861	0.5000	ug/L	137% *	18-126		

^{*} Value is outside QC limits

ND Not Detected