2019 WATER QUALITY MONITORING REPORT FOR THE BIG TUJUNGA WASH MITIGATION AREA

Prepared for:

LOS ANGELES COUNTY PUBLIC WORKS 900 Fremont Avenue, 2nd Floor Annex Alhambra, CA 91802

Prepared by:

CHAMBERS GROUP, INC. 5 Hutton Centre Drive, Suite 750 Santa Ana, California 92707 (949) 261-5414

December 2019

TABLE OF CONTENTS

SECTION 1.0 – EXECUTIVE SUMMARY1
SECTION 2.0 – BACKGROUND
SECTION 3.0 – MATERIALS AND METHODS6
SECTION 4.0 – RESULTS
SECTION 5.0 – DISCUSSION
SECTION 6.0 – GLOSSARY
LIST OF FIGURES
Figure 1: Mitigation Area Water Quality Sampling Stations7
LIST OF TABLES
Table 1: Major Activities to Date at the Big Tujunga Wash Mitigation Area 2
Table 2: Pesticides Potentially Used at the Angeles National Golf Club 4
Table 3: Water Quality Sampling Locations and Conditions for October 2019
Table 4: Water Quality Sampling Parameters
Table 5: Baseline Water Quality (2000) 10
Table 6: Summary of Water Quality Results – October 30, 2019
Table 7: National and Local Recommended Water Quality Criteria - Freshwaters 12
Table 8: Temperature and pH-Dependent Values of the CMC (Acute Criterion) Mussels Absent
Table 9: Temperature and pH-Dependent Values of the CCC (Chronic Criterion) Mussels Absent and EarlyFish Life Stages Present
Table 10: 30-Day Average Objective for Ammonia-N for Freshwaters Applicable to Waters Subject to the"Early Life Stage Present" Condition (mg N/L)
Table 11: One-Hour Average Objective for Ammonia-N for Freshwaters (mg N/L) 17
Table 12: Example Calculated Values for Maximum Weekly Average Temperature for Growth and Short-Term Maxima for Survival of Juvenile and Adult Fishes During the Summer

Table 13: Discussion of October 2019 Water Quality Sampling Results	. 18
---	------

LIST OF APPENDICES

APPENDIX A - 2019 Big Tujunga Wash Mitigation Area Water Quality Monitoring Program Laboratory Results

Distribution

Water quality monitoring reports are distributed to the following agencies:

Los Angeles County Public Works Ms. Julianna Colwell 900 South Fremont Avenue Alhambra, California 91803-1331

California Department of Fish and Wildlife Mr. Steve Gibson Senior Environmental Scientist (Specialist) CA Dept. of Fish and Wildlife 4665 Lampson Ave. suite C Los Alamitos, CA 90720

Regional Water Quality Control Board, Los Angeles Region (4) Ms. Valerie Carrillo Zara 320 West 4th Street, Suite 200 Los Angeles, California 90013

U.S. Fish and Wildlife Service Ms. Christine Medak 2117 Salk Avenue, Suite 250 Carlsbad, California 92008

U.S. Army Corps of Engineers Mr. Aaron Allen P.O. Box 532711 Los Angeles, California 90053-2325

Interested Party Mr. William Eick 2604 Foothill Boulevard, Suite C La Crescenta, California 91214

SECTION 1.0 – EXECUTIVE SUMMARY

As part of a water quality monitoring program on-going since 2000, water quality sampling of the Big Tujunga Ponds and Haines Canyon Creek was conducted on October 30, 2019. Additional water samples were collected on November 14, 2019, to test for organochlorine pesticides. The water quality sampling results are summarized below:

- DO levels at two of the sample stations were below the minimum recommended level (5.0 mg/L) for Basin Plan objectives and EPA's criteria for warmwater fish species.
- pH readings in all three sample stations were below the recommended range of 6.5 to 8.5 identified in the Basin Plan objectives, and were within the recommended range of 5.0 to 9.0 for EPA's criteria for human health.
- Nitrate-Nitrogen was below the drinking water maximum standard of 10 mg/L for both Basin Plan standards and EPA criteria for human health at all sample stations. Nitrate-Nitrogen and Ammonia-Nitrogen were not detected at any of the sample stations.
- Nutrient levels were low at all sample stations. Total Phosphorus-P concentrations were below the lower end of the EPA's recommended maximum range of 0.05 to 0.10 mg/L for the desired goal of preventing plant nuisances in streams.
- No pesticides or residual chlorine were detected at any of the sample stations.
- Turbidity levels were below or within the drinking water maximum range of 0.5 to 1.0 NTU for the EPA's criteria for human health at all sample stations.
- Fecal coliform levels detected were below the standard geometric mean of 126 MPN/100 ml at the inflow to the Tujunga Ponds, but were above the standard geometric mean at the outflow from the Tujunga Ponds and where Haines Canyon Creek exits the site. However, the standards are for *E.coli* and the water quality results are for fecal coliform and total coliform.

SECTION 2.0 – BACKGROUND

Los Angeles County Public Works (Public Works) purchased an approximately 210-acre parcel in Big Tujunga Wash as a mitigation area for Los Angeles County Flood Control District (LACFCD) projects throughout Los Angeles County. In coordination with local agencies, Public Works defined a number of measures to improve habitat quality at the site. A Final Master Mitigation Plan (FMMP) was prepared to guide the implementation of these enhancements. The FMMP also includes a monitoring program to gather data on conditions at the site during implementation of the improvements. The FMMP was prepared and is currently being implemented by Chambers Group, Inc. (Chambers Group). Water quality monitoring was conducted on a quarterly basis from the fourth quarter of 2000 through the fourth quarter of 2005. In 2006, monitoring was conducted on a semi-annual basis. In 2007 through 2009 monitoring was conducted annually, in December. In 2010, monitoring was conducted in November and pesticide sampling was conducted in early December. In 2012, monitoring was conducted in February and November. From 2013 to present, monitoring has been conducted annually in the fall. This report presents the results of the water quality sampling for October 2019.

The Big Tujunga Wash Mitigation Area (Mitigation Area) is located just east of Hansen Dam in the Shadow Hills area of the City of Los Angeles. Both Big Tujunga Wash, an intermittent stream, and Haines Canyon Creek, a perennial stream, traverse the Mitigation Area in an east-to-west direction. The East Tujunga Pond and West Tujunga Pond are located outside of the Mitigation Area, at the far northeastern portion of the site.

2.1 PROJECT SITE ACTIVITIES

A timeline of project-related activities including water quality sampling events is presented in Table 1.

Date	Activity		
2000, April	Baseline water quality sampling		
2000, November to	Arundo, tamarisk, and pepper tree removal Chemical (Rodeo [®])		
2001, November	application		
2000, December to 2000, November	Water hyacinth removal		
2000, December	Fish Sampling at Haines Canyon Creek		
2000, December	Water quality sampling		
2001 January to procent	Exotic aquatic wildlife (non-native fish, crayfish, bullfrog, and turtle)		
2001, January to present	removal – conducted quarterly		
2001, February	Partial riparian planting		
2001, March	Selective clearing at Canyon Trails Golf Club		
2001, March	Water quality sampling		
2001, June	Water quality sampling		
2001, July	Fish Sampling at Haines Canyon Creek		
2001, September	Water quality sampling		
2001, October to 2001, November	Fish Sampling at Haines Canyon Creek		

Table 1: Major Activities to Date at the Big Tujunga Wash Mitigation Area

Date	Activity			
2001, December	Water quality sampling			
2002, January	Final riparian planting			
2002, July	Upland replacement planting			
2002, March	Water quality sampling			
2002, June	Water quality sampling			
2002, July	Fish Sampling at Haines Canyon Creek			
2002, September	Water quality sampling			
2002, October	Grading at Canyon Trails Golf Club begins			
2002, November	Fish Sampling at Haines Canyon Creek			
2002, December	Water quality sampling			
2003, March	Water quality sampling			
	Meeting with Canyon Trails Golf Club to discuss future use of herbicides			
2003, April	and fertilizers			
2003, June	Water quality sampling			
2003, August	Fish Sampling at Haines Canyon Creek			
2003, September	Water quality sampling			
2003, fall	Completion of the golf course construction			
2003, December	Water quality sampling			
2003, December 2003, 2004, January	Fish Sampling at Haines Canyon Creek			
2004, April	Water quality sampling			
2004, April	Rock Dam Removal Day			
2004, April	Angeles National Golf Club (previously named Canyon Trails) opens to the			
2004, June	public			
2004, July	Water quality sampling			
2004, October	Water quality sampling			
2004, December	Water quality sampling			
2005, April	Water quality sampling			
2005, June	Water quality sampling			
2005, October	Water quality sampling			
2005, December	Water quality sampling			
2006, July	Water quality sampling			
2006, December	Water quality sampling			
2007, December	Water quality sampling			
2008, December	Water quality sampling			
· · · ·	The Station Fire was the largest fire in the recorded history of Angeles			
	National Forest and the 10th largest fire in California since 1933. The fire			
2009, August to October	burned a total of 160,577 acres. The fire was fully contained on October			
<i>,</i> C	16, 2009. (Source: Angeles National Forest Incident Update available -			
	http://www.inciweb.org/incident/1856/)			
2009, December	Water quality sampling			
2010, November	Water quality sampling			
2010, December	Water quality sampling for pesticides			
2011, September to				
2012, January	Water lettuce removal			
2012, February	Water quality sampling			
, , , , , , , , , , , , , , , , , , , ,				

Date	Activity
2012, November	Water quality sampling
2013, October	Water quality sampling
2014, October	Water quality sampling
2015, November	Water quality sampling
2016, November 7	Water quality sampling
2017, December	The Creek Fire began on December 5, 2017, approximately 4 miles east of Sylmar, California. The Creek Fire burned a total of 15,619 acres. Much of the Mitigation Area burned, and close to 75 percent of the entire site exhibited signs of severe surface burns, including approximately all of the riparian communities found along Haines Canyon Creek, and more than half of the vegetation within the Big Tujunga Wash area. The fire was fully contained on January 9, 2018. (Sources: Angeles National Forest Incident Update available - https://inciweb.nwcg.gov/incident/5669/; Chambers Group 2018 Post Fire Assessment Report)
2017, December 21	Water quality sampling
2018, December 17	Water quality sampling
2019, April 23	After April 23, 2019 Chambers Group stopped the use of all herbicides
	within the Mitigation Area. From April 23 forward, exotic plants were
	managed with mechanical weed control methods only.
2019, October 30	Water Quality Sampling

2.2 UPSTREAM LAND USES

The monitoring program has been designed to specifically address inputs to the site from upstream land uses such as the Angeles National Golf Club (previously named Canyon Trails Golf Club). The golf course has been operating since June 2004. Potential negative impacts to aquatic species from run-on to the site that contains excessive nutrients or pesticides are of primary concern. Pesticides potentially used at the Angeles National Golf Course include herbicides, insecticides, fungicides, and grass growth inhibitors (Table 2).

Actual use of pesticides is based on golf course maintenance needs. Based on the pesticide use information from the Angeles National Golf Club, analysis of water samples for glyphosate, chlorpyrifos, other organophosphorous pesticides, and organochlorine pesticides is included in the sampling program for the Mitigation Area.

Manufacturer and Product Name	Active Ingredient	Use
Syngenta Primo Maxx	trinexapac-ethyl	grass growth inhibitor used for turf management
Syngenta Reward	diquat dibromide	landscape and aquatic herbicide
Syngenta Barricade	prodiamine	pre-emergent herbicide
Bayer Prostar 70 WP	flutolanil	fungicide
Monsanto QuikPRO	ammonium salt of glyphosphate and diquat dibromide	herbicide

Table 2: Pesticides Potentially Used at the Angeles National Golf Club

Monsanto Rodeo [®] Verdicon Kleenup [®] Pro Lesco Prosecutor	glyphosate	emerged aquatic weed and brush herbicide
Valent ProGibb T&O	gibberellic acid	plant growth regulator
BASF Insignia 20 WG	pyraclostrobin	fungicide
BASF Stalker	Isopropylamine salt of Imazapyr	herbicide
Dow Agrosciences Surflan A.S.	oryzalin	herbicide
Dow Agrosciences Dursban Pro	chlorpyrifos	insecticide
Mycogen Scythe	pelargonic acid	herbicide

Source: J. Reidinger, Angeles National Golf Club, pers. comm. to M. Chimienti, LACDPW, March 18, 2004 and Angeles National Golf Club Monthly Summary Pesticide Use Reports (December 2004, February 2005 and April 2007).

SECTION 3.0 – MATERIALS AND METHODS

3.1 SAMPLING STATIONS

Four sampling locations have been identified for the monitoring program for the Mitigation Area (Figure 1). Table 3 summarizes sampling locations and the conditions observed on October 30, 2019.

Figure 1: Mitigation Area Water Quality Sampling Stations

Date	October 30, 2019		
Air Temperature	Between 15.0 and 19.4 (°Celsius) during sample collection period		
Skies	Clear		
Observations	Water was clear at	all locations	
Sampling Locations	Latitude	Longitude	Time of sample
Outflow from Tujunga Ponds	34.26896 N	118.34189 W	0837
Inflow to Tujunga Ponds	34.26834 N	118.33961 W	0925
Haines Canyon Creek, before exit from the site	34.26669 N	118.35714 W	1020
Big Tujunga Wash	34.26989 N	118.35126 W	station dry

Table 3: Water Quality Sampling Locations and Conditions for October 2019

3.2 SAMPLING PARAMETERS

Table 4 summarizes the sampling parameters included in the water quality monitoring program. The following meters were used in the field:

- pH and temperature Milwaukee MW102 PRO+ 2-in-1 Temperature and pH Meter
- Dissolved oxygen Milwaukee MW600 PRO Dissolved Oxygen Meter
- Turbidity Hanna Instruments HI98703 Turbidity Portable Meter

Analytical results were performed at Enthalpy Analytical, LLC, located in Orange, California and Test America, located in Savannah, Georgia. Samples were taken at mid-depth, along a transect perpendicular to the stream channel alignment. Quality assurance/quality control (QA/QC) procedures in each laboratory followed the methods described in their respective quality assurance manuals.

Parameter	Analysis Location	Analytical Method
total Kjeldahl nitrogen (TKN)	laboratory	EPA 351.2
nitrite - nitrogen (NO ₂ -N)	laboratory	EPA 300.0 by IC
Nitrate - nitrogen (NO₃-N)	laboratory	EPA 300.0 by IC
ammonia (NH4)	laboratory	EPA 350.1
orthophosphate - P	laboratory	Standard Methods 4500PE/EPA 365.1
total phosphorus - P	laboratory	Standard Methods 4500PE/EPA 365.1
total coliform	laboratory	Standard Methods 9221B
fecal coliform	laboratory	Standard Methods 9221C
turbidity	field	EPA 180.1
glyphosate (Roundup/Rodeo) ¹	laboratory	EPA 547
chlorpyrifos and organophosphorus pesticides ²	laboratory	EPA 8141A
organochlorine pesticides ³	laboratory	EPA 608
dissolved oxygen	field	Standard Methods 4500-O G
total residual chlorine	laboratory	Standard Methods 4500-Cl
temperature	field	Standard Methods 2550
рН	field	Standard Methods 4500-H+

Table 4: Water Quality Sampling Parameters

Sources for analytical methods:

EPA. Method and Guidance for Analysis of Water.

American Public Health Association, American Waterworks Association, and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. Washington D.C.

- 1 First analysis completed in the first quarter of 2004
- 2 First analysis completed in the fourth quarter of 2004. This analytical method tests for the following chemicals: azinphos- methyl, bolster, coumaphos, diazinon, chlorpyrifos, demeton, dichlorvos, disulfoton, ethoprop, fensulfothion, fenthion, mevinphos, naled, phorate, runnel, stirophos, parathion-methyl, tokuthion, and trichloronate.
- 3 First analysis completed in December 2007. EPA method 608 tests for aldrin, BHC, chlordane, DDD, DDE, DDT, dieldrin, endrin, endosulfan, heptaclor, methoxychlor, toxaphene and PCB.

SECTION 4.0 – RESULTS

4.1 BASELINE WATER QUALITY

Sampling and analysis conducted by Public Works prior to implementation of the FMMP is considered the baseline for water quality conditions at the Mitigation Area. The results of baseline analyses conducted in April 2000 are presented in Table 5. Higher bacteria and turbidity observed in the 4/18/2000 samples are attributable to a rain event. Phosphorus levels were also high in the 4/18/2000 samples, due to release from sediments.

Parameter	Units	Date (2000)	Haines Canyon Creek, Inflow to Tujunga Ponds	Haines Canyon Creek, Outflow from Tujunga Ponds	Big Tujunga Wash	Haines Canyon Creek, just before exit from site
	MPN/	4/12	3,000	5,000	170	1,700
Total coliform	100 ml	4/18	2,200	170,000	2,400	70,000
	MPN/	4/12	500	300	40	80
Fecal coliform	100 ml	4/18	500	30,000	2,400	50,000
	_	4/12	0	0	0	0
Ammonia-N	mg/L	4/18	0	0	0	0
		4/12	8.38	5.19	0	3.73
Nitrate-N	mg/L	4/18	8.2	3.91	0.253	0.438
		4/12	0.061	0	0	0
Nitrite-N	Nitrite-N mg/L	4/18	0.055	0	0	0
		4/12	0	0.1062	0.163	0
Kjeldahl-N	mg/L	4/18	0	0.848	0.42	0.428
Dissolved		4/12	0.078	0.056	0	0.063
phosphorus	mg/L	4/18	0.089	0.148	0.111	0.163
Total		4/12	0.086	0.062	0	0.066
phosphorus	mg/L	4/18	0.113	0.153	0.134	0.211
	std	4/12	7.78	7.68	7.96	7.91
рН	units	4/18	7.18	7.47	7.45	7.06
		4/12	1.83	0.38	1.75	0.6
Turbidity	NTU	4/18	4.24	323	4070	737

Table 5: Baseline Water Quality (2000)

MPN – most probable number NTU – nephelometric turbidity units

4.2 OCTOBER 2019 RESULTS

Results of analyses conducted by Enthalpy Analytical and Test America are appended to this report (Appendix A) and summarized in Table 6.

Parameter	Units	Inflow to Tujunga Ponds	Outflow from Tujunga Ponds	Big Tujunga Wash	Haines Canyon Creek, just before exit from site
Dissolved Oxygen	mg/L	3.6	4.9	NA	9.6
рН	std units	5.06	5.92	NA	5.45
Total residual chlorine	mg/L	ND	ND	NA	ND
Ammonia-Nitrogen	mg/L	ND	ND	NA	ND
Kjeldahl Nitrogen	mg/L	0.635	ND	NA	ND
Nitrite-Nitrogen	mg/L	ND	ND	NA	ND
Nitrate-Nitrogen	mg/L	8.07	5.78	NA	5.17
Orthophosphate-P (dissolved phosphorus)	mg/L	0.0220	ND	NA	0.0220
Total phosphorus-P	mg/L	0.036	0.024	NA	0.028
Glyphosate	μg/L	ND	ND	NA	ND
Chlorpyrifos* (and other Organophosphorus Pesticides)	μg/L	ND	ND	NA	ND
Pesticides (EPA 608)** (Organochlorine Pesticides)	µg/L	ND	ND	NA	ND
Turbidity	NTU	0.22	0.31	NA	0.53
Fecal Coliform Bacteria	(MPN/100 ml)	79	240	NA	130
Total Coliform Bacteria	(MPN/100 ml)	540	1600	NA	240

Table 6: Summary	v of Water Oualit	y Results – October 30, 2019
	y or watch Quant	

NA – data not available; station dry on the sample date NTU – nephelometric turbidity units

MPN – most probable number ND – non-detect

* The analytical method used for chlorpyrifos (EPA 8141A) also tests for the following chemicals: azinphos-methyl, bolster, coumaphos, demeton, diazinon, dichlorvos, disulfoton, ethoprop, fensulfothion, fenthion, merphos, methyl parathion, mevinphos, naled, phorate, ronnel, stirophos, tokuthion, and trichloronate.

** EPA method 608 tests for aldrin, BHC, Chlordane, DDD, DDE, DDT, dieldrin, endrin, endosulfan, heptaclor, methoxychlor, and toxaphene. Water samples for these pesticides were collected on November 14, 2019.

4.3 COMPARISON OF RESULTS WITH AQUATIC LIFE CRITERIA

Tables 7 through 12 present objectives established by the United States Environmental Protection Agency (USEPA) and the Los Angeles Regional Water Quality Control Board (Regional Board) for protection of beneficial uses including freshwater aquatic life.

	Basin Plan		EPA Criteria	
Parameter	Objectives ^a	СМС	CCC	Human Health
Temperature (^O C)	b	See Table 13	See Table 13	
Dissolved oxygen (mg/L)	>7.0 mean >5.0 min	5.0 ^C (warmwater, early life stages, 1-day minimum)	6.0 ^C (warmwater, early life stages, 7-day mean)	
рН	6.5 - 8.5		6.5-9.0 ^{d,e}	5.0-9.0 ^{d,e}
Total residual chlorine (mg/L)	0.1			4.0 (maximum residual disinfectant level goal)
Fecal coliform (MPN/100 ml)	126 ^f (geometric mean for <i>E. coli</i>) (water contact recreation)			Swimming standards: 33 ^g (geometric mean for enterococci) 126 ^g (geometric mean for <i>E. coli</i>)
Ammonia- nitrogen (mg/L)	See Tables 11 and 12	See Table 9	See Table 10	
Nitrite-nitrogen (mg/L)	1			1 (primary drinking water standard)
Nitrate-nitrogen (mg/L)	10			10 (primary drinking water standard)
Total phosphorus (mg/L)		<0.05 recommendation) criter	n for streams, no	
Turbidity (NTU)	h	i	i	5 (secondary drinking water standard) 0.5 – 1.0 (standard for systems that filter)

 Table 7: National and Local Recommended Water Quality Criteria - Freshwaters

Notes:

MPN most probable number

NTU nephelometric turbidity units

-- No criterion

CMC Criteria Maximum Concentration or acute criterion

CCC Criteria Continuous Concentration or chronic criterion

a Source: California Regional Water Quality Control Board, Los Angeles Region. 1994. Water Quality Control Plan (Basin Plan). As amended.

- **b** Narrative criterion: "The natural receiving water temperature of all regional waters shall not be altered unless it can be demonstrated to the satisfaction of the Regional Board that such alteration in temperature does not adversely affect beneficial uses."
- c Source: USEPA. 1986. Ambient Water Quality Criteria for Dissolved Oxygen. EPA 440-5-86-003. Washington, D.C.
- d Source: USEPA. 1999. National Recommended Water Quality Criteria Correction. EPA 822-Z-99-001. Washington, D.C.
- e Source: USEPA. 1986. Quality Criteria for Water. EPA 440/5-86-001. Washington, D.C.
- f Single sample limits E. coli density shall not exceed 235/100 ml.
- g Source: USEPA. 1986. Ambient Water Quality Criteria for Bacteria 1986. EPA 440-5-84-002. Washington, D.C.
- h Narrative criterion: "Waters shall be free of changes in turbidity that cause nuisance or adversely affect beneficial uses."
- i Narrative criterion for freshwater fish and other aquatic life: "Settleable and suspended solids should not reduce the depth of the compensation point for photosynthetic activity by more than 10 percent from the seasonally established norm for aquatic life."

Table 8: Temperature and pH-Dependent Values of the CMC (Acute Criterion) Mussels Absent

	CMC: Mussels Absent, mg N/L											
				т	emperatu	re (°Celsiu	is)					
рН	0	14	16	18	20	22	24	26	28	30		
6.5	58.0	58.0	58.0	58.0	43.7	37.0	31.4	26.6	22.5	19.1		
6.6	55.7	55.7	55.7	55.7	41.9	35.5	30.1	25.5	21.6	18.3		
6.7	53.0	53.0	53.0	53.0	39.9	33.8	28.6	24.3	20.6	17.4		
6.8	49.9	49.9	49.9	49.9	37.6	31.9	27.0	22.9	19.4	16.4		
6.9	46.5	46.5	46.5	46.5	35.1	29.7	25.2	21.3	18.1	15.3		
7.0	42.9	42.9	42.9	42.9	32.3	27.4	23.2	19.7	16.7	14.1		
7.1	39.1	39.1	39.1	39.1	29.4	24.9	21.1	17.9	15.2	12.8		
7.2	35.1	35.1	35.1	35.1	26.4	22.4	19.0	16.1	13.6	11.5		
7.3	31.2	31.2	31.2	31.2	23.5	19.9	16.8	14.3	12.1	10.2		
7.4	27.3	27.3	27.3	27.3	20.6	17.4	14.8	12.5	10.6	8.98		
7.5	23.6	23.6	23.6	23.6	17.8	15.1	12.8	10.8	9.18	7.77		
7.6	20.2	20.2	20.2	20.2	15.3	12.9	10.9	9.27	7.86	6.66		
7.7	17.2	17.2	17.2	17.2	12.9	11.0	9.28	7.86	6.66	5.64		
7.8	14.4	14.4	14.4	14.4	10.9	9.21	7.80	6.61	5.60	4.74		
7.9	12.0	12.0	12.0	12.0	9.07	7.69	6.51	5.52	4.67	3.96		
8.0	9.99	9.99	9.99	9.99	7.53	6.38	5.40	4.58	3.88	3.29		
8.1	8.26	8.26	8.26	8.26	6.22	5.27	4.47	3.78	3.21	2.72		
8.2	6.81	6.81	6.81	6.81	5.13	4.34	3.68	3.12	2.64	2.24		
8.3	5.60	5.60	5.60	5.60	4.22	3.58	3.03	2.57	2.18	1.84		
8.4	4.61	4.61	4.61	4.61	3.48	2.95	2.50	2.11	1.79	1.52		
8.5	3.81	3.81	3.81	3.81	2.87	2.43	2.06	1.74	1.48	1.25		
8.6	3.15	3.15	3.15	3.15	2.37	2.01	1.70	1.44	1.22	1.04		
8.7	2.62	2.62	2.62	2.62	1.97	1.67	1.42	1.20	1.02	0.862		

	CMC: Mussels Absent, mg N/L											
	Temperature (°Celsius)											
рН	0	14	16	18	20	22	24	26	28	30		
8.8	2.19	2.19	2.19	2.19	1.65	1.40	1.19	1.00	0.851	0.721		
8.9	1.85	1.85	1.85	1.85	1.39	1.18	1.00	0.847	0.718	0.608		
9.0	1.57	1.57	1.57	1.57	1.19	1.00	0.851	0.721	0.611	0.517		

Note: Native species of freshwater mussels are not known for Big Tujunga Wash or Haines Canyon Creek. CMC – Criteria Maximum Concentration (ammonia)

Source: USEPA. 2009. Draft 2009 Update Aquatic Life Ambient Water Quality Criteria for Ammonia - Freshwater. EPA 822-D-09-001. Washington, D.C

		CCC: Muss	els Absent	and Earl	y Fish Life	Stages Pre	esent, mg	N/L		
				Te	emperatu	e (°Celsius)			
рН	0	14	16	18	20	22	24	26	28	30
6.5	6.36	6.36	6.36	6.36	6.36	6.11	5.37	4.72	4.15	3.65
6.6	6.26	6.26	6.26	6.26	6.26	6.02	5.29	4.65	4.09	3.60
6.7	6.15	6.15	6.15	6.15	6.15	5.91	5.19	4.57	4.01	3.53
6.8	6.00	6.00	6.00	6.00	6.00	5.77	5.08	4.46	3.92	3.45
6.9	5.84	5.84	5.84	5.84	5.84	5.61	4.93	4.34	3.81	3.35
7.0	5.64	5.64	5.64	5.64	5.64	5.42	4.76	4.19	3.68	3.24
7.1	5.41	5.41	5.41	5.41	5.41	5.20	4.57	4.02	3.53	3.10
7.2	5.14	5.14	5.14	5.14	5.14	4.94	4.35	3.82	3.36	2.95
7.3	4.84	4.84	4.84	4.84	4.84	4.66	4.09	3.60	3.16	2.78
7.4	4.52	4.52	4.52	4.52	4.52	4.34	3.82	3.36	2.95	2.59
7.5	4.16	4.16	4.16	4.16	4.16	4.00	3.52	3.09	2.72	2.39
7.6	3.79	3.79	3.79	3.79	3.79	3.65	3.21	2.82	2.48	2.18
7.7	3.41	3.41	3.41	3.41	3.41	3.28	2.89	2.54	2.23	1.96
7.8	3.04	3.04	3.04	3.04	3.04	2.92	2.57	2.26	1.98	1.74
7.9	2.67	2.67	2.67	2.67	2.67	2.57	2.26	1.98	1.74	1.53
8.0	2.32	2.32	2.32	2.32	2.32	2.23	1.96	1.72	1.52	1.33
8.1	2.00	2.00	2.00	2.00	2.00	1.92	1.69	1.49	1.31	1.15
8.2	1.71	1.71	1.71	1.71	1.71	1.64	1.45	1.27	1.12	0.982
8.3	1.45	1.45	1.45	1.45	1.45	1.40	1.23	1.08	0.949	0.835
8.4	1.23	1.23	1.23	1.23	1.23	1.18	1.04	0.914	0.804	0.706
8.5	1.04	1.04	1.04	1.04	1.04	0.999	0.878	0.772	0.679	0.597
8.6	0.878	0.878	0.878	0.878	0.878	0.844	0.742	0.652	0.573	0.504
8.7	0.742	0.742	0.742	0.742	0.742	0.714	0.628	0.552	0.485	0.426
8.8	0.631	0.631	0.631	0.631	0.631	0.606	0.533	0.469	0.412	0.362
8.9	0.539	0.539	0.539	0.539	0.539	0.518	0.455	0.400	0.352	0.309
9.0	0.464	0.464	0.464	0.464	0.464	0.446	0.392	0.345	0.303	0.266

Table 9: Temperature and pH-Dependent Values of the CCC (Chronic Criterion) Mussels Absent andEarly Fish Life Stages Present

Note: Native species of freshwater mussels are not known for Big Tujunga Wash or Haines Canyon Creek. CCC – Criteria Continuous Concentration (ammonia)

Source: USEPA. 2009. Draft 2009 Update Aquatic Life Ambient Water Quality Criteria for Ammonia - Freshwater. EPA 822-D-09-001. Washington, D.C.

рН				Temp	erature (°C	elsius)			
рп	14	16	18	20	22	24	26	28	30
6.5	6.67	6.06	5.33	4.68	4.12	3.62	3.18	2.80	2.46
6.6	6.57	5.97	5.25	4.61	4.05	3.56	3.13	2.75	2.42
6.7	6.44	5.86	5.15	4.52	3.98	3.50	3.07	2.70	2.37
6.8	6.29	5.72	5.03	4.42	3.89	3.42	3.00	2.64	2.32
6.9	6.12	5.56	4.89	4.30	3.78	3.32	2.92	2.57	2.25
7.0	5.91	5.37	4.72	4.15	3.65	3.21	2.82	2.48	2.18
7.1	5.67	5.15	4.53	3.98	3.50	3.08	2.70	2.38	2.09
7.2	5.39	4.90	4.31	3.78	3.33	2.92	2.57	2.26	1.99
7.3	5.08	4.61	4.06	3.57	3.13	2.76	2.42	2.13	1.87
7.4	4.73	4.30	3.78	3.32	2.92	2.57	2.26	1.98	1.74
7.5	4.36	3.97	3.49	3.06	2.69	2.37	2.08	1.83	1.61
7.6	3.98	3.61	3.18	2.79	2.45	2.16	1.90	1.67	1.47
7.7	3.58	3.25	2.86	2.51	2.21	1.94	1.71	1.50	1.32
7.8	3.18	2.89	2.54	2.23	1.96	1.73	1.52	1.33	1.17
7.9	2.80	2.54	2.24	1.96	1.73	1.52	1.33	1.17	1.03
8.0	2.43	2.21	1.94	1.71	1.50	1.32	1.16	1.02	0.897
8.1	2.10	1.91	1.68	1.47	1.29	1.14	1.00	0.879	0.773
8.2	1.79	1.63	1.43	1.26	1.11	0.973	0.855	0.752	0.661
8.3	1.52	1.39	1.22	1.07	0.941	0.827	0.727	0.639	0.562
8.4	1.29	1.17	1.03	0.906	0.796	0.700	0.615	0.541	0.475
8.5	1.09	0.990	0.870	0.765	0.672	0.591	0.520	0.457	0.401
8.6	0.920	0.836	0.735	0.646	0.568	0.499	0.439	0.386	0.339
8.7	0.778	0.707	0.622	0.547	0.480	0.422	0.371	0.326	0.287
8.8	0.661	0.601	0.528	0.464	0.408	0.359	0.315	0.277	0.244
8.9	0.565	0.513	0.451	0.397	0.349	0.306	0.269	0.237	0.208
9.0	0.486	0.442	0.389	0.342	0.300	0.264	0.232	0.204	0.179

Table 10: 30-Day Average Objective for Ammonia-N for Freshwaters Applicable to Waters Subject to
the "Early Life Stage Present" Condition (mg N/L)

Source: California Regional Water Quality Control Board, Los Angeles Region. 2005. Amendments to the Water Quality Control Plan – Los Angeles Region with Respect to Early Life Stage Implementation Provisions of the Inland Surface Water Ammonia Objectives for Freshwaters. Taken from USEPA. 1999. 1999 Update of Ambient Water Quality Criteria for Ammonia. EPA 822-R-99-014. Washington, D.C.

рН	Waters Designated COLD and/or MIGR	Waters Not Designated COLD and/or MIGR
6.5	32.6	48.8
6.6	31.3	46.8
6.7	29.8	44.6
6.8	28.1	42.0
6.9	26.2	39.1
7.0	24.1	36.1
7.1	22.0	32.8
7.2	19.7	29.5
7.3	17.5	26.2
7.4	15.4	23.0
7.5	13.3	19.9
7.6	11.4	17.0
7.7	9.65	14.4
7.8	8.11	12.1
7.9	6.77	10.1
8.0	5.62	8.40
8.1	4.64	6.95
8.2	3.83	5.72
8.3	3.15	4.71
8.4	2.59	3.88
8.5	2.14	3.20
8.6	1.77	2.65
8.7	1.47	2.20
8.8	1.23	1.84
8.9	1.04	1.56
9.0	0.885	1.32

Table 11: One-Hour Average Objective for Ammonia-N for Freshwaters (mg N/L)

COLD – Beneficial use designation of Cold Freshwater Habitat

MIGR – Beneficial use designation of Migration of Aquatic Organisms

Source: California Regional Water Quality Control Board, Los Angeles Region. 2002. Amendments to the Water Quality Control Plan – Los Angeles Region with Respect to Inland Surface Water Ammonia Objectives. Taken from USEPA. 1999. 1999 Update of Ambient Water Quality Criteria for Ammonia. EPA 822-R-99-014. Washington, D.C.

Table 12: Example Calculated Values for Maximum Weekly Average Temperature for Growth and Short-Term Maxima for Survival of Juvenile and Adult Fishes During the Summer

Species	Growth (°Celsius)	Maxima (°Celsius)
Black crappie	27	
Bluegill	32	35
Channel catfish	32	35
Emerald shiner	30	
Largemouth bass	32	34
Brook trout	19	24

Source: USEPA. 1986. Quality Criteria for Water. EPA 440/5-86-001. Washington, D.C.

SECTION 5.0 – DISCUSSION

Results from the October 2019 sampling are described by parameter in Table 13.

Table 13: Discussion of October 2019 Water Quality Sampling Results

Parameter	Discussion
Dissolved oxygen	• DO levels were 3.6 mg/L at the inflow to the Tujunga Ponds, 4.9 mg/L at the outflow from the Tujunga Ponds, and 9.6 mg/L where Haines Canyon Creek exits the site. DO levels at two of the sample stations were below the minimum recommended level (5.0 mg/L) for Basin Plan objectives and EPA's criteria for warmwater fish species.
рН	• pH readings were 5.06 at the inflow to the Tujunga Ponds, 5.92 at the outflow from the Tujunga Ponds, and 5.45 where Haines Canyon Creek exits the site. pH readings in all three sample stations were below the recommended range of 6.5 to 8.5 identified in the Basin Plan objectives, and were within the recommended range of 5.0 to 9.0 for EPA's criteria for human health.
Total residual chlorine	No residual chlorine was detected at any sample station.
Nitrogen	 Nitrate-Nitrogen measurements at all sample stations were below the drinking water maximum standard of 10 mg/L for both Basin Plan standards and EPA criteria for human health.
	Nitrite-Nitrogen was not detected at any sample station.Ammonia-Nitrogen was not detected at any sample station.
Phosphorus	• The observed Total Phosphorus-P concentrations were 0.036 mg/L at the inflow to the Tujunga Ponds, 0.024 mg/L at the outflow to the Tujunga Ponds, and 0.028 mg/L where Haines Canyon Creek exits the site. Total Phosphorus-P concentrations were below the lower end of the EPA's recommended maximum range of 0.05 to 0.10 mg/L for the desired goal of preventing plant nuisances in streams.
Glyphosate	Glyphosate was not detected at any sample station.
Chlorpyrifos and other Organophosphorus Pesticides	• Organophosphorus Pesticides including Chlorpyrifos, that were analyzed by EPA method 8141A were not detected at any sample station.
Organochlorine Pesticides	• Organochlorine pesticides analyzed by EPA Method 608 were not detected at any sample station.
Turbidity	• Turbidity readings were 0.31 NTU at the inflow to the Tujunga Ponds, 0.22 NTU at the outflow from the Tujunga Ponds, and 0.53 NTU where Haines

Parameter	Discussion
	Canyon Creek exits the site. Turbidity levels were below or within the drinking water maximum range of 0.5 to 1.0 NTU for the EPA's criteria for human health at all sample stations.
Coliform Bacteria	 Per the Basin Plan objectives, the fresh water bacteria standard for water contact recreation is for <i>E. coli</i> (126 MPN/100 ml geometric mean, 235 MPN/100 ml single sample limits). Fecal coliform levels detected were below the standard geometric mean at the inflow to the Tujunga Ponds (79 MPN/100 ml) but were above the geometric mean at the outflow from the Tujunga Ponds (240 MPN/100 ml) and where Haines Canyon Creek exits the site 130 MPN/100ml). Sampling specifically for <i>E. coli</i> was not conducted.
	• Total coliform levels were 540 MPN/100 ml at the inflow to the Tujunga Ponds, 1600 MPN/100 ml at the outflow from the Tujunga Ponds and 240 MPN/100 ml where Haines Canyon Creek exits the site. [Note that recreation standards are for <i>E. coli</i> . Per the Basin Plan, total coliform standards apply to marine waters and waterbodies where shellfish can be harvested for human consumption.]
mg/L – milligrams per liter	NTU – nephelometric turbidity units MPN – most probable number

SECTION 6.0 – GLOSSARY

Ammonia-Nitrogen – NH3-N is a gaseous alkaline compound of nitrogen and hydrogen that is highly soluble in water. Un-ionized ammonia (NH3) is toxic to aquatic organisms. The proportions of NH3 and ammonium (NH4+) and hydroxide (OH-) ions are dependent on temperature, pH, and salinity.

Chlorine, Residual – The chlorination of water supplies and wastewaters serves to destroy or deactivate disease-producing organisms. Residual chlorine in natural waters is an aquatic toxicant.

Chlorpyrifos - White crystal-like solid insecticide widely used in homes and on farms. Used to control cockroaches, fleas, termites, ticks crop pests.

Coliform Bacteria – Several genera of bacteria belonging to the family Enterobacteriaceae. Based on the method of detection, the coliform group is historically defined as facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas and acid formation within 48 hours at 35 C.

Coliform Bacteria, Fecal – Part of the intestinal flora of warm-blooded animals. Presence in surface waters is considered an indication of pollution.

Dissolved Oxygen - Dissolved oxygen (DO) is the amount of oxygen that is present in water. Water bodies receive oxygen from the atmosphere and from aquatic plants. Running water, such as that of a swift moving stream, dissolves more oxygen than the still water of a pond or lake.

Glyphosate - White compound broad-spectrum herbicide used to kill weeds.

Kjeldahl Nitrogen – Named for the laboratory technique used for detection, Kjeldahl nitrogen includes organic nitrogen and ammonia nitrogen.

Nitrate-Nitrogen – NO3--N is an essential nutrient for many photosynthetic autotrophs.

Nitrite-Nitrogen – NO2--N is an intermediate oxidation state of nitrogen, both in the oxidation of ammonia to nitrate and in the reduction of nitrate.

Organochlorine Pesticides – An older class of pesticides, that are effective against a variety of insects. These chemicals were introduced in the 1940s, and many of their uses have been cancelled or restricted by the U.S. EPA because of their environmental persistence and potential adverse effects on wildlife and human.

Organophosphorus Pesticides – These pesticides are active against a broad spectrum of insects and have accounted for a large share of all insecticides used in the United States. Although organophosphorus insecticides are still used for insect control on many food crops, most residential uses have been phased out in the United States. Certain organophosphorus insecticides are also registered for public health applications (e.g., mosquito control) in the United States.

Orthophosphorus – The reactive form of phosphorus, commonly used as fertilizer.

pH – The hydrogen ion activity of water (pH) is measured on a logarithmic scale, ranging from 0 to 14. The pH of "pure" water at 25° C is 7.0 (neutral). Low pH is acidic; high pH is basic or alkaline.

Phosphorus, Total – In natural waters, phosphorus occurs almost solely as orthophosphates, condensed phosphates, and organically bound phosphate. Phosphorus is essential to the growth of organisms.

Turbidity – Attributable to the suspended and colloidal matter in water, including clay, silt, finely divided organic and inorganic matter, soluble colored organic compounds, and plankton and other microscopic organisms. The reduction of clearness in turbid waters diminishes the penetration of light and therefore can adversely affect photosynthesis.

APPENDIX A – 2019 LABORATORY RESULTS

Lab Request: 420782 Report Date: 11/08/2019 Date Received: 10/30/2019 Client ID: 14294

Comments: Big Tujunga

See attached for Glyphosate and Organophosphorus Pesticide results.

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #Client Sample ID420782-001Ponds Inlet420782-002Ponds Outlet420782-003Haines Creek Exit

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

M. Malva

Report Review performed by: Diane Galvan, Project Manager

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Water	Clie	ent: Chambers	s Group	Collector: Enthalpy Analytical						
Sampled: 10/30/2019 09:25	S	Site:								
Sample #: 420782-001	Client Sample	e #: Ponds Inl	et		Samp	le Type:				
Analyte		Result	DF	RDL	_ Units	Prepared	Analyzed		Notes	
Method: ALCH 4025	Prep Method:	None					QCBatchID			
Total Nitrogen		8.70	1	0.5	mg/L		11/07/19	SLL		
Method: EPA 300.0	Prep Method:	Method					QCBatchID	: Q0	C1208289	
Nitrate, as Nitrogen		8.07	1	0.1	mg/L	10/30/19	10/30/19 14:37	JP		
Nitrite, as Nitrogen		ND	1	0.1	mg/L	10/30/19	10/30/19 14:37	JP		
Method: EPA 350.1	Prep Method:	Method					QCBatchID	: Q(C1208472	
Ammonia, as Nitrogen		ND	1	0.1	mg/L	11/06/19	11/06/19	ΤP		
Method: EPA 351.2	Prep Method:	Method					QCBatchID	: Q0	C1208336	
Total Kjeldahl Nitrogen		0.635	1	0.4	mg/L	11/01/19	11/01/19	TP		
Method: EPA 547	Prep Method:	Method					QCBatchID	:		
See Attached			1							
Method: EPA 8141A NELAC	Prep Method:	EPA 3510C					QCBatchID	:		
See Attached			1							
Method: SM 4500-Cl	Prep Method:	Method					QCBatchID	: Q0	C1208294	
Chlorine, Total Residual		ND	1	0.1	mg/L		10/30/19 16:55	WW	T2	
Method: SM 4500-P-B-5-E	Prep Method:	4500-P-B-5					QCBatchID	: Q0	C1208424	
Total Phosphorous as P		0.036	1	0.02	mg/L	11/05/19	11/05/19	ΤP		
Total Phosphorous as PO4		0.110	1	0.06	mg/L	11/05/19	11/05/19	ΤP		
Method: SM 4500-P-E	Prep Method:	Method					QCBatchID	: Q0	C1208418	
Orthophosphate, as P		0.0220	1	0.02	mg/L	10/30/19 17:00	10/30/19 17:17	ΤP		
Orthophosphate, as PO4		0.067	1	0.06	mg/L	10/30/19 17:00	10/30/19 17:17	ΤP		
Method: SM 9221-B	Prep Method:	Method					QCBatchID	: Q(C1208254	
Coliform, Total		540	1		MPN/100ml	10/30/19 14:50	11/03/19 11:35	CO		
Method: SM 9221-E	Prep Method:	Method					QCBatchID	: Q(C1208254	
Coliform, Fecal		79	1		MPN/100ml	10/30/19 14:50	11/02/19 12:29	LH		

Matrix: Water	Clie	ent: Chamber	s Group	Collector: Enthalpy Analytical						
Sampled: 10/30/2019 08:37	S	Site:								
Sample #: <u>420782-002</u>	Client Sample	e #: Ponds Ou	utlet		Samp	le Type:				
Analyte		Result	DF	RDL	_ Units	Prepared	Analyzed		Notes	
Method: ALCH 4025	Prep Method:	None					QCBatchID			
Total Nitrogen		5.78	1	0.5	mg/L		11/07/19	SLL		
Method: EPA 300.0	Prep Method:	Method					QCBatchID	: Q(01208289	
Nitrate, as Nitrogen		5.78	1	0.1	mg/L	10/30/19	10/30/19 14:57	JP		
Nitrite, as Nitrogen		ND	1	0.1	mg/L	10/30/19	10/30/19 14:57	JP		
Method: EPA 350.1	Prep Method:	Method					QCBatchID	: Q(01208472	
Ammonia, as Nitrogen		ND	1	0.1	mg/L	11/06/19	11/06/19	ΤP		
Method: EPA 351.2	Prep Method:	Method					QCBatchID	: Q(C1208336	
Total Kjeldahl Nitrogen		ND	1	0.4	mg/L	11/01/19	11/01/19	TP		
Method: EPA 547	Prep Method:	Method					QCBatchID	:		
See Attached			1							
Method: EPA 8141A NELAC	Prep Method:	EPA 3510C					QCBatchID	:		
See Attached			1							
Method: SM 4500-Cl	Prep Method:	Method					QCBatchID	: Q0	C1208294	
Chlorine, Total Residual		ND	1	0.1	mg/L		10/30/19 16:55	WW	T2	
Method: SM 4500-P-B-5-E	Prep Method:	4500-P-B-5					QCBatchID	: Q(01208424	
Total Phosphorous as P		0.024	1	0.02	mg/L	11/05/19	11/05/19	TP		
Total Phosphorous as PO4		0.074	1	0.06	mg/L	11/05/19	11/05/19	ΤP		
Method: SM 4500-P-E	Prep Method:	Method					QCBatchID	: Q(C1208418	
Orthophosphate, as P		ND	1	0.02	mg/L	10/30/19 17:00	10/30/19 17:17	TP		
Orthophosphate, as PO4		ND	1	0.06	mg/L	10/30/19 17:00	10/30/19 17:17	ΤP		
Method: SM 9221-B	Prep Method:	Method					QCBatchID	: Q(01208254	
Coliform, Total		1600	1		MPN/100ml	10/30/19 14:50	11/03/19 11:35	CO		
Method: SM 9221-E	Prep Method:	Method					QCBatchID	: Q(01208254	
Coliform, Fecal		240	1		MPN/100ml	10/30/19 14:50	11/02/19 12:29	LH		

Matrix: Water	Clie	ent: Chamber	s Group	Collector: Enthalpy Analytical						
Sampled: 10/30/2019 10:20	S	Site:								
Sample #: <u>420782-003</u>	Client Sample	e #: Haines C	reek Exit		Samp	le Type:				
Analyte		Result	DF	RDI	_ Units	Prepared	Analyzed		Notes	
Method: ALCH 4025	Prep Method:	None					QCBatchID			
Total Nitrogen		5.17	1	0.5	mg/L		11/07/19	SLL		
Method: EPA 300.0	Prep Method:	Method					QCBatchID	: Q(01208289	
Nitrate, as Nitrogen		5.17	1	0.1	mg/L	10/30/19	10/30/19 15:17	JP		
Nitrite, as Nitrogen		ND	1	0.1	mg/L	10/30/19	10/30/19 15:17	JP		
Method: EPA 350.1	Prep Method:	Method					QCBatchID	: Q(01208472	
Ammonia, as Nitrogen		ND	1	0.1	mg/L	11/06/19	11/06/19	TP		
Method: EPA 351.2	Prep Method:	Method					QCBatchID	: Q(01208336	
Total Kjeldahl Nitrogen		ND	1	0.4	mg/L	11/01/19	11/01/19	TP		
Method: EPA 547	Prep Method:	Method					QCBatchID	:		
See Attached			1							
Method: EPA 8141A NELAC	Prep Method:	EPA 3510C					QCBatchID	:		
See Attached			1							
Method: SM 4500-CI	Prep Method:	Method					QCBatchID	: Q(21208294	
Chlorine, Total Residual		ND	1	0.1	mg/L		10/30/19 16:55	WW	T2	
Method: SM 4500-P-B-5-E	Prep Method:	4500-P-B-5					QCBatchID	: Q(21208424	
Total Phosphorous as P		0.028	1	0.02	mg/L	11/05/19	11/05/19	TP		
Total Phosphorous as PO4		0.086	1	0.06	mg/L	11/05/19	11/05/19	TP		
Method: SM 4500-P-E	Prep Method:	Method					QCBatchID	: Q(01208418	
Orthophosphate, as P		0.0220	1	0.02	mg/L	10/30/19 17:00	10/30/19 17:17	TP		
Orthophosphate, as PO4		0.067	1	0.06	mg/L	10/30/19 17:00	10/30/19 17:17	ΤP		
Method: SM 9221-B	Prep Method:	Method					QCBatchID	: Q(21208254	
Coliform, Total		240	1		MPN/100ml	10/30/19 14:50	11/02/19 12:29	LH		
Method: SM 9221-E	Prep Method:	Method					QCBatchID	: Q(21208254	
Coliform, Fecal		130	1		MPN/100ml	10/30/19 14:50	11/02/19 12:29	LH		

QCBatchID: QC1208289 Analys	t: JParedes	Method:	EPA 300.0									
Matrix: Water Analyze	d: 10/30/2019	Instrument:	AAICP (group)									
Blank Summary												
	Blank											
Analyte	Result	Units		RDL	Notes							
QC1208289MB1	-1											
Bromide	ND	mg/L		0.3								
Chloride	ND	mg/L		1								
Nitrate, as Nitrogen	ND	mg/L		0.1								
Nitrate, as NO3	ND	mg/L		0.44								
Nitrite, as Nitrogen	ND	mg/L		0.1								
Nitrite, as NO2	ND	mg/L		0.33								
Sulfate	ND	mg/L		0.5								

Lab Control Spike/ Lab Control Spike Duplicate Summary											
	Spike	Amount	Spike	Result		Reco	veries		Limi	ts	
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1208289LCS1	ł										
Bromide	15		15.0		mg/L	100			90-110		
Chloride	100		105		mg/L	105			90-110		
Nitrate, as Nitrogen	9.03		9.49		mg/L	105			90-110		
Nitrate, as NO3	40		42.0		mg/L	105			90-110		
Nitrite, as Nitrogen	9.15		9.46		mg/L	103			90-110		
Nitrite, as NO2	30		31.0		mg/L	103			90-110		
Sulfate	50		52.0		mg/L	104			90-110		

	Mat	trix Sp	ike/Mati	rix Spik	e Dupli	icate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1208289MS1, QC1208289MSD1										So	ource:	420787-001
Bromide	ND	15	15	15.1	15.2	mg/L	101	101	0.7	80-120	20	
Chloride	81.8	100	100	169	173	mg/L	87	91	2.3	80-120	20	
Nitrate, as Nitrogen	ND	9.03	9.03	9.40	9.52	mg/L	104	105	1.3	80-120	20	
Nitrate, as NO3	ND	40	40	41.6	42.2	mg/L	104	106	1.4	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	8.85	8.86	mg/L	97	97	0.1	80-120	20	
Nitrite, as NO2	ND	30	30	29.0	29.1	mg/L	97	97	0.3	80-120	20	
Sulfate	16.6	50	50	66.8	66.9	mg/L	100	101	0.1	80-120	20	
QC1208289MS2, QC1208289MSD2										Sc	ource:	420800-004
Bromide	ND	15	15	14.6	15.0	mg/L	97	100	2.7	80-120	20	
Chloride	174	100	100	249	247	mg/L	75	73	0.8	80-120	20	М
Nitrate, as Nitrogen	4.88	9.03	9.03	13.8	14.1	mg/L	99	102	2.2	80-120	20	
Nitrate, as NO3	21.6	40	40	61.1	62.4	mg/L	99	102	2.1	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	8.06	8.50	mg/L	88	93	5.3	80-120	20	
Nitrite, as NO2	ND	30	30	26.4	27.9	mg/L	88	93	5.5	80-120	20	
Sulfate	6.23	50	50	56.0	57.3	mg/L	100	102	2.3	80-120	20	

QCBatchID: QC1208294	Analyst:	wei	Method:	SM 4500-CI					
Matrix: Water	Analyzed:	10/30/2019	Instrument:	CHEM (group)					
		Bla	ank Summai	у					
		Blank							
Analyte		Result	Units		RDL	No	tes		
QC1208294MB1	1						1		
Chlorine, Total Residual		ND	mg/L		0.1				
	Lab Contr	ol Spike/ Lab	Control Spi	ke Duplicate	e Summary	,			
		Spike Amount	Spike Result		Recoveries		Lim	its	
Analyte		LCS LCSD	LCS LCSI	D Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1208294LCS1						•			
Chlorine, Total Residual		1	1.04	mg/L	104		80-120		
		Dupl	icate Summ	ary					
		Sample	Duplicate			Limi	ts		
Analyte		Amount	Amount	Units	RPD	RPI	D	Notes	
QC1208294DUP1		1				-	Sc	ource: 4	20789-002
Chlorine, Total Residual		1.16	1.16	mg/L	0.0	20			

QCBatchID: QC1208336	Analyst:	trinh		Meth	od:	EPA 351.2						
Matrix: Water	Analyzed:	11/01/201	9	Instrum	ent:	CHEM (group)						
			Bla	ank Sum	mary	У						
		BI	ank									
Analyte		Re	esult	Unit	s		R	DL	No	tes		
QC1208336MB1	Ł					1 L		1				
Total Kjeldahl Nitrogen			ND	mg/	L		0.	.4				
	Lab Conti	r ol Spike Spike Am		Control Spike Re	-	e Duplicate		nmary overies		Lim	iits	
Analyte		LCS L	CSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1208336LCS1	I								1			
Total Kjeldahl Nitrogen		2.5		2.6		mg/L	104			80-120		
	Mat	rix Spike	Matr	ix Spike	Dup	licate Sum	mary					
	Sample	Spike Am	ount	Spike Re	sult		Reco	overies		Limi	ts	
Analyte	Amount	MS I	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1208336MS1, QC1208336MSD ²	· · ·					•				So	ource:	420782-00

83

mg/L

62

26.8

80-120 20

M,D

Total Kjeldahl Nitrogen

0.635

12.5

12.5

11

8.4

QCBatchID: QC1208418	Analyst:	trinh	Method:	SM 4500-P-E					
Matrix: Water	Analyzed:	10/30/2019	Instrument:	CHEM (group)	1				
		В	lank Summa	ry					
		Blank							
Analyte		Result	Units		RDL	No	otes		
QC1208418MB1			1			1	1		
Orthophosphate, as P		ND	mg/L		0.02				
Orthophosphate, as PO4		ND	mg/L		0.06				
	Lab Contr	ol Spike/ Lat	Control Sp	ike Duplicate	e Summa	ary			
		Spike Amount	Spike Result		Recoveri	es	Lim	its	
Analyte		LCS LCSD	LCS LCS	D Units	LCS LC	SD RPD	%Rec	RPD	Notes
QC1208418LCS1			1						
Orthophosphate, as P		0.4	0.3900	mg/L	98		80-120		
Orthophosphate, as PO4		1.2264	1.19	mg/L	97		80-120		

Matrix Spike/Matrix Spike Duplicate Summary												
	Sample	Spike /	Amount	Spike	Result		Reco	overies		Limi	s	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1208418MS1, QC1208418MSD1										So	ource:	420762-002
Orthophosphate, as P	0.4220	0.8	0.8	1.17	1.17	mg/L	94	94	0.0	75-125	25	
Orthophosphate, as PO4	1.29	2.46	2.46	3.57	3.57	mg/L	93	93	0.0	75-125	25	

, anaryst.	trinh	wethoa:	SM 4500-P-B-	5-E								
Analyzed:	11/05/2019	Instrument:	CHEM (group)	1								
Blank Summary												
	Blank											
	Result	Units		RDL	No	tes						
I				I								
	ND	mg/L		0.02								
	ND	mg/L		0.06								
Lab Control Spike/ Lab Control Spike Duplicate Summary												
	Spike Amount	Spike Result		Recoveries		Limi	ts					
	LCS LCSD	LCS LCSI	D Units	LCS LCSD	RPD	%Rec	RPD	Notes				
-		Blank Result ND ND Lab Control Spike/ Lab Spike Amount	Blank Summai Blank Units Result Units ND mg/L ND mg/L Lab Control Spike/ Lab Control Spik Spike Result	Blank Summary Blank Units ND mg/L ND mg/L Lab Control Spike/ Lab Control Spike Duplicate Spike Amount Spike Result	Blank Summary Blank Result Units RDL ND mg/L 0.02 ND mg/L 0.06 Lab Control Spike/ Lab Control Spike Duplicate Summary Spike Amount Spike Result Recoveries	Blank Summary Blank RDL No ND mg/L 0.02 ND mg/L 0.06 Lab Control Spike/ Lab Control Spike Duplicate Summary Spike Amount Spike Result Recoveries	Blank Summary Blank Result Units RDL Notes ND mg/L 0.02 0.06 0.06 Lab Control Spike / Lab Control Spike Duplicate Summary Spike Amount Spike Result Recoveries Limi	Blank Summary Blank Result Units RDL Notes ND mg/L 0.02 0.06 0.06 Lab Control Spike / Lab Control Spike Duplicate Summary Spike Amount Spike Result Recoveries Limits				

0.386

1.18

MS

0.562

1.72

Matrix Spike/Matrix Spike Duplicate Summary

Spike Result

MSD

0.562

1.72

0.4

1.3

MS

0.4

1.3

Spike Amount

MSD

0.4

1.3

Sample

Amount

0.143

0.438

Total Phosphorous as P

Total Phosphorous as P

Total Phosphorous as PO4

Total Phosphorous as PO4

Analyte

QC1208424MS1, QC1208424MSD1

80-120

80-120

Limits

%Rec RPD

75-125

75-125

Notes

Source: 420756-001

20

20

97

91

MS

105

99

Recoveries

MSD

105

99

RPD

0.0

0.0

mg/L

mg/L

Units

mg/L

mg/L

QCBatchID: QC1208472	Analyst:	Echavez	Method:	EPA 350.1					
Matrix: Water	Analyzed:	11/06/2019	Instrument:	CHEM (group)					
		BI	ank Summai	у					
		Blank							
Analyte		Result	Units		RDL	No	tes		
QC1208472MB1			- 1	-1	1				
Ammonia, as Nitrogen		ND	mg/L		0.1				
	Lab Conti	rol Spike/ Lab Spike Amount		ke Duplicate	e Summary Recoveries	, 	Lim	its	
Analyte	Lab Conti	rol Spike/ Lab Spike Amount LCS LCSD	Control Spike Spike Result LCS LCSI	-	-		Lim %Rec	its RPD	Notes
Analyte QC1208472LCS1	Lab Conti	Spike Amount	Spike Result	-	Recoveries				Notes
,	Lab Contr	Spike Amount	Spike Result	-	Recoveries				Notes
QC1208472LCS1		Spike Amount LCS LCSD	Spike Result LCS LCSI 2.56	D Units mg/L	Recoveries LCS LCSD 102		%Rec		Notes
QC1208472LCS1		Spike Amount LCS LCSD 2.5	Spike Result LCS LCSI 2.56	D Units mg/L	Recoveries LCS LCSD 102		%Rec	RPD	Notes

· · · · · · · · · · · · · · · · · · ·						• • • • • •			=	,		
QC1208472MS1, QC1208472MSD1										So	urce:	420782-001
Ammonia, as Nitrogen	ND	2.5	2.5	2.57	2.54	mg/L	103	102	1.2	80-120	20	

Data Qualifiers and Definitions

Qualifiers	
A	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
C	Possible laboratory contamination.
D D1	RPD was not within control limits. The sample data was reported without further clarification. Lesser amount of sample was used due to insufficient amount of sample supplied.
D2	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
Е	Concentration is estimated because it exceeds the quantification limits of the method.
I	The sample was read outside of the method required incubation period.
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.
J	Reported value is estimated
L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample data was reported with qualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.
М	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits. Sample result is estimated.
N1	Sample chromatography does not match the specified TPH standard pattern.
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
P	Sample was received without proper preservation according to EPA guidelines.
P1	Temperature of sample storage refrigerator was out of acceptance limits.
P2 P3	The sample was preserved within 24 hours of collection in accordance with EPA 218.6. Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended
	due to potential loss of target analytes. Results may be biased low.
Q1 Q2	Analyte Calibration Verification exceeds criteria. The result is estimated. Analyte calibration was not verified and the result was estimated.
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate recoveries in the associated batch QC met recovery criteria.
S3	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
т	Sample was extracted/analyzed past the holding time.
T1	Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).
T2	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.
T3	Sample received and analyzed out of hold time per client's request.
T4 T5	Sample was analyzed out of hold time per client's request.
T6	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable. Hold time is indeterminable due to unspecified sampling time.
T7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.
Definitions	
Deminions	Dilution Factor
MDL	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.
ND	Analyte was not detected or was less than the detection limit.
NR	Not Reported. See Report Comments.
RDL	Reporting Detection Limit
TIC	Tentatively Identified Compounds

Enthalpy Analytical, LLC

		V J J		 Chair 	Chain of Custody Record	Record	Turn	Around Tim	Turn Around Time (rush by advanced notice only)	nced notice on	<u>ار ا</u>
	LININAL	A II	LLY	Lab No:	nztn2h	5	Standard:		5 Day:	3 Day:	
				Page:		of	2 Day:		1 Day:	Custom TAT:	
	Enthalpy Analytical - Orange 931 W. Barkley Avenue, Orange, CA 92868	I - Orange ange, CA 92868		: A = , Wat		S = Soil/Solid DW = Drinking Wate SD = Sediment = Pure Product SEA = Sea Water	w = W =	Preservatives: Na ₂ S ₂ O ₃ 2 4 = H ₂ SO ₄ 5	aservatives: 1= Na ₂ S ₂ O ₃ 2 = HCl 3 = HNO ₃ 4 = H ₂ SO ₄ 5 = NaOH 6 = Other	: Sample Receipt Temp: $/\mathcal{E}\cdot \mathbf{z}$	t Temp:
	Phone 714-771-6900	900		SW = S	SW = Swab T = Tissue	WP = Wipe	0 = Other			(lab use only)	ly)
บ	CUSTOMER INFORMATION		PROJECT	IECT INFORMATION	VTION		Analysis Request	uest	Test Instr	Test Instructions / Comments	nts
Company:	Chamber Broug Inc.		Quote #:			(
Report To:	Mouricio Gomez		Proj. Name:	Big Tujungy	6J	12/20			دنهد		<u></u>
Email:	with where the champer solver of the come		Proj. #:			<i>и</i> ри			llos Min		
Address:			P.O.#:			ц	1	(olup J S		
-		A	Address:			ња ња пн(<u>stn</u>	5 32.07 107.07 107.07 107.07	82 UN (1)		
Phone:	9237-20E-522	9	Global ID:			ĄV	ydx	<u>)11</u>	1111 11 20 11 11 11 11 111 11 11 11		
Fax:		Š	Sampled By:			- 6	oudo 611	12	507 4001		
	Sample ID	Sampling Date	Sampling Time	Matrix	Container No. / Size	Press Liston Histin	rome 10401	Intot Past	1070) 10670 10670 1012		
1 Pands	Inlet	10/30/19	0925								
2 Pords	outlet	10/30/19	0637								
3 HOINUS	itaines Creek Exit	10/30/10	10:20								
4											
5			-								
6											
7											
8									Oby h i	Ern w/out 1	jice
6									9		
10											
		Signature		Print Name	lame		Company / Title	Title		Date / Time	
¹ Relinquished By:	1 BY: Com	- All wh-	James Tames	res Nowales	ζ	Chambers	Group/Coll	Chambers Group/Collections Managed	106/ 10/30/19	1/12:15	en
¹ Received By:				G. Kim		J	:		10/30/4	1 1715	
² Relinquished By:	I By:								-	-	
² Received By:											
³ Relinquished By:	l By:										
³ Received By:											

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Chambers Group	Project: Big Tujunga			
Date Received: 10/30/19	Sampler's Name Present:	Yes	√ No	
Section 2				
Sample(s) received in a cooler? Yes, How many?	\sqrt{NO} (skin section 2)	Sample	e Temp (°C) (No Cooler)	· 18.2
—			(No Cooler)	•
Sample Temp (°C), One from each cooler: #1: (Acceptance range is < 6°C but not frozen (for Microbiology samples, accept			for sample	s collected
the same day as sample receipt to have a higher temper				
Shipping Information:				
Section 3				
Was the cooler packed with: Ice Ice Packs Paper None	Bubble Wrap Styrof	oam		
Cooler Temp (°C): #1:#2:	#3:	_#4:		
Section 4		YES	NO	N/A
Was a COC received?	an a	\checkmark		
Are sample IDs present?		\checkmark		
Are sampling dates & times present?		$\overline{\checkmark}$		
Is a relinquished signature present?				
Are the tests required clearly indicated on the COC?				
Are custody seals present?			\checkmark	
If custody seals are present, were they intact?				1
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)			\checkmark
Did all samples arrive intact? If no, indicate in Section 4	below.	\checkmark		
Did all bottle labels agree with COC? (ID, dates and time	es)	1		
Were the samples collected in the correct containers fo	or the required tests?	1		
Are the containers labeled with the correct preser	rvatives?	1		
Is there headspace in the VOA vials greater than 5-6 mr	n in diameter?			✓
Was a sufficient amount of sample submitted for the re	equested tests?	\checkmark		
Section 5 Explanations/Comments				
Section 3 Explanations/ comments				
Section 6	_			
For discrepancies, how was the Project Manager notifie				
	Email (email sent to/o	n):	/	
Project Manager's response:				
	i t c			
Completed By:	Date:10/30/19	-		
	f Montrose Environmental Group ,Inc. 8 • T: (714) 771-6900 • F: (714) 538-1209			
www.entha	alpy.com/socal			
Sample Acceptance C	hecklist – Rev 4, 8/8/2017			

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-176222-1 Client Project/Site: 420782

For:

.....Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Enthalpy Analytical LLC 931 W. Barkley Ave Orange, California 92868

Attn: Diane Galvan

athyn Smith

Authorized for release by: 11/8/2019 12:54:16 PM

Kathryn Smith, Manager of Project Management (912)250-0275 kathy.smith@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Client: Enthalpy Analytical LLC Project/Site: 420782

Percent Recovery

Dilution Factor

Contains Free Liquid

Contains No Free Liquid

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Calculated

Quality Control

Limit of Quantitation (DoD/DOE)

Duplicate Error Ratio (normalized absolute difference)

Decision Level Concentration (Radiochemistry)

Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Glossary Abbreviation

¤ %R

CFL

CNF

DER

DL

DLC

EDL LOD

100

MDA

MDC MDL

ML NC

ND

PQL

QC

RER

RPD TEF

TEQ

RL

Dil Fac

DL, RA, RE, IN

2
5
8
9

Eurofins TestAmerica, Savannah

Sample Summary

Client: Enthalpy Analytical LLC Project/Site: 420782

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
680-176222-1	Ponds Inlet (420782-001)	Water	10/30/19 09:25	10/31/19 09:45	
680-176222-2	Ponds Outlet (420782-002)	Water	10/30/19 08:37	10/31/19 09:45	
680-176222-3	Haines Creek Exit (420782-003)	Water	10/30/19 10:20	10/31/19 09:45	

Case Narrative

Job ID: 680-176222-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

Job Narrative 680-176222-1

Comments

No additional comments.

Receipt

The samples were received on 10/31/2019 9:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.9° C.

HPLC/IC

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample Results

		Client \$	Sample R	esults	ذ					
Client: Enthalpy Analytical LLC Project/Site: 420782								Job ID: 680-'	176222-1	2
Client Sample ID: Ponds I Date Collected: 10/30/19 09:25 Date Received: 10/31/19 09:45	5	11)					Lab Samp	ole ID: 680-17 Matri	76222-1 rix: Water	
Date Received: 10/31/19 03.45										
Method: 547 LL - Glyphosate Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Glyphosate	ND		6.0		ug/L			11/07/19 23:51	1	
Client Sample ID: Ponds	Outlet (420782-	002)					Lab Samr	ole ID: 680-17	76222-2	
Date Collected: 10/30/19 08:37 Date Received: 10/31/19 09:45	,								rix: Water	7
Method: 547 LL - Glyphosate		Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac	8
Glyphosate	ND		6.0		ug/L			11/08/19 00:48	1	9
Client Sample ID: Haines Date Collected: 10/30/19 10:20 Date Received: 10/31/19 09:45)	782-003)					Lab Samp	ole ID: 680-17 Matri	76222-3 rix: Water	1
Method: 547 LL - Glyphosate										
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Glyphosate	ND		6.0		ug/L			11/08/19 01:07	1	

Job ID: 680-176222-1

Method: 547 LL - Glyphosate (DAI HPLC)

Lab Sample ID: MB 680-595184/2										Clie	ent S	ample ID:		
Matrix: Water												Prep 1	Гуре: То	tal/NA
Analysis Batch: 595184														
		MB MB												
Analyte	R	esult Qual	lifier	RL		MDL	Unit		D	Prepar	red	Analy	zed	Dil Fac
Glyphosate		ND		6.0			ug/L					11/07/19	18:06	1
Lab Sample ID: LCS 680-595184/3									Clie	nt Sar	nple	ID: Lab C	ontrol S	ample
Matrix: Water												Prep 1	Гуре: То	tal/NA
Analysis Batch: 595184														
-			Spike		LCS	LCS						%Rec.		
Analyte			Added	Re	esult	Quali	ifier	Unit	D) %R	lec	Limits		
Glyphosate			200		201			ug/L		1	01	80 - 120		
Lab Sample ID: LCSD 680-595184/4								C	lient Sa	mple	ID: I	_ab Contro	ol Samp	le Dup
Matrix: Water										÷			Гуре: То	
Analysis Batch: 595184														
· · ·			Spike	L	CSD	LCSE	2					%Rec.		RPD
Analyte			Added	Re	esult	Quali	ifier	Unit	D) %R	lec	Limits	RPD	Limit
Glyphosate			200		192			ug/L			96	80 - 120	4	20
Lab Sample ID: 680-176222-1 MS								С	lient Sa	mple	ID: I	Ponds Inle	t (42078	2-001)
Matrix: Water													Type: To	
Analysis Batch: 595184														
	Sample	Sample	Spike		MS	MS						%Rec.		
Analyte	Result	Qualifier	Added	Re	esult	Quali	ifier	Unit	D) %R	lec	Limits		
Glyphosate	ND		200		199			ug/L		1	00	80 - 120		
Lab Sample ID: 680-176222-1 MSD								С	lient Sa	mple		Ponds Inle	t (42078	2-001)
Matrix: Water													Гуре: То	
Analysis Batch: 595184													.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
·	Sample	Sample	Spike	1	MSD	MSD						%Rec.		RPD
Analyte	•	Sample Qualifier	Spike Added			MSD Quali	ifier	Unit	D) %R	lec	%Rec. Limits	RPD	RPD Limit

HPLC/IC

Analysis Batch: 595184

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-176222-1	Ponds Inlet (420782-001)	Total/NA	Water	547 LL	
680-176222-2	Ponds Outlet (420782-002)	Total/NA	Water	547 LL	
680-176222-3	Haines Creek Exit (420782-003)	Total/NA	Water	547 LL	
MB 680-595184/2	Method Blank	Total/NA	Water	547 LL	
LCS 680-595184/3	Lab Control Sample	Total/NA	Water	547 LL	
LCSD 680-595184/4	Lab Control Sample Dup	Total/NA	Water	547 LL	
680-176222-1 MS	Ponds Inlet (420782-001)	Total/NA	Water	547 LL	
680-176222-1 MSD	Ponds Inlet (420782-001)	Total/NA	Water	547 LL	

Initial

Amount

1 mL

Final

Amount

1 mL

Dil

1

Factor

Run

Date Collected: 10/30/19 09:25

Date Received: 10/31/19 09:45

Prep Type

Total/NA

Matrix: Water

Matrix: Water

8

Batch	Prepared			
Number	or Analyzed	Analyst	Lab	
595184	11/07/19 23:51	EKB	TAL SAV	

Lab Sample ID: 680-176222-2

Lab Sample ID: 680-176222-1

Client Sample ID: Ponds Outlet (420782-002) Date Collected: 10/30/19 08:37 Date Received: 10/31/19 09:45

Client Sample ID: Ponds Inlet (420782-001)

Batch

Method

547 LL

Instrument ID: CLCR

Batch

Туре

Analysis

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analvzed	Analyst	Lab
Total/NA	Analysis	547 LL		1	1 mL	1 mL	595184	11/08/19 00:48	EKB	TAL SAV
	Instrume	nt ID: CLCR								

Client Sample ID: Haines Creek Exit (420782-003) Date Collected: 10/30/19 10:20 Date Received: 10/31/19 09:45

Lab Sample ID: 680-176222-3 Matrix: Water

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	547 LL		1	1 mL	1 mL	595184	11/08/19 01:07	EKB	TAL SAV
	Instrume	nt ID: CLCR								

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-176222-1

Laboratory: Eurofins TestAmerica, Savannah

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	SAVLAB	
Alabama	State	41450	06-30-20
Alaska	State	GA00006	06-30-20
Alaska (UST)	State	17-016	09-30-20
ANAB	Dept. of Defense ELAP	L2463	09-22-22
ANAB	DoD	L2463	09-22-22
ANAB	ISO/IEC 17025	L2463.01	09-22-22
ANAB	ISO/IEC 17025	L2463.01	09-22-22
Arizona	State	AZ0808	12-14-19
Arkansas DEQ	State	19-015-0	02-01-20
Arkansas DEQ	State Program	88-0692	02-01-20
California	State	2939	06-30-20
Colorado	State	GA00006	12-31-19
Connecticut	State	PH-0161	03-31-21
Florida	NELAP	E87052	06-30-20
GA Dept. of Agriculture	State Program	N/A	06-12-20
Georgia	State	E87052	06-30-20
Georgia	State Program	N/A	06-30-20
Georgia (DW)	State	803	06-30-20
Guam	State	19-007R	04-17-20
Hawaii	State	<cert no.=""></cert>	06-30-20
Indiana	State	C-GA-02	06-30-20
lowa	State	353	09-22-20
Kansas	NELAP	E-10322	10-15-20
Kentucky (DW)	State	KY90084	12-31-19
Kentucky (UST)	State	<cert no.=""></cert>	06-30-20
Kentucky (UST)	State Program	18	06-30-20
			12-31-19
Kentucky (WW)	State State Bragger	KY90084 90084	
Kentucky (WW)	State Program		12-31-19
Louisiana	NELAP	02011	06-30-20
₋ouisiana (DW)	State	LA009	12-31-19
Maine	State	GA00006	09-26-20
Maryland	State	250	12-31-19
Massachusetts	State	M-GA006	06-30-20
Massachusetts	State Program	M-GA006	06-30-20
Vichigan	State	9925	06-30-20
Mississippi	State	<cert no.=""></cert>	06-30-20
Mississippi	State Program	N/A	06-30-20
Nebraska	State	NE-OS-7-04	06-30-20
Nebraska	State Program	TestAmerica-Savannah	06-30-20
New Hampshire	NELAP	2096	05-29-20
New Hampshire	NELAP	2096	05-29-20
New Jersey	NELAP	GA769	06-30-20
New Mexico	State	GA00006	06-30-20
New York	NELAP	10842	04-01-20
North Carolina (DW)	State	13701	07-31-20
North Carolina (DW)	State Program	13701	07-31-20
North Carolina (WW/SW)	State	269	12-31-19
North Carolina (WW/SW)	State Program	269	12-31-19
Oklahoma	State	9984	08-31-20

Eurofins TestAmerica, Savannah

Job ID: 680-176222-1

Laboratory: Eurofins TestAmerica, Savannah (Continued)

Authority	Program	Identification Number	Expiration Date	
Pennsylvania	NELAP	68-00474	06-30-20	
Puerto Rico	State	GA00006	01-01-20	
South Carolina	State	98001	06-30-20	
Tennessee	State	02961	06-30-20	
Texas	NELAP	T104704185-19-13	11-30-19 *	
Texas	NELAP	T1047004185-19-3	11-30-19	
Texas	TCEQ Water Supply	T104704185	09-23-20	
US Fish & Wildlife	US Federal Programs	LE058448-0	07-31-20	
USDA	US Federal Programs	P330-18-00313	10-29-21	
Virginia	NELAP	10509	06-14-20	
Washington	State	C805	06-10-20	
West Virginia (DW)	State	9950C	12-31-19	
West Virginia (DW)	State Program	9950C	12-31-19	
West Virginia DEP	State	094	11-30-19	
Wisconsin	State	999819810	08-31-20	
Wyoming	State	8TMS-L	06-30-20 *	
Wyoming	State Program	8TMS-L	06-30-16 *	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: Enthalpy Analytical LLC Project/Site: 420782

	5
	8
	9
•	0

Method	Method Description	Protocol	Laboratory
547 LL	Glyphosate (DAI HPLC)	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins TestAmerica, Savannah

30	Enthalpy Analytical Formerly Associated Labs 1 Park Plaza, Suite 1000 Irvine, CA 92614 Tel: 714.771.6900 Fax: 714.538.1209 info-sc@enthalpy.com		MONTROSE
Subcontract Laboratory:		Project:	420782 <u>Due:</u>
		PM:	Diane Galvan
Test America - Savannah 5102 LaRoche Avenue		Email:	diane.galvan@enthalpy.com
Savannah, GA 31404		CC:	incomingreports@enthalpy.com
912-354-7858 ATTN: Kathy Smith		Require:	EDD EDF EDT
PO#		Report To:	MDL
e:			

Matrix	Sampled	Sample ID	Analysis	Comment
Water	10/30/19 09:25	Ponds Inlet (420782-001)	547 Out	Glyphosate
Water	10/30/19 08:37	Ponds Outlet (420782-002)	547 Out	Glyphosate
Water	10/30/19 10:20	Haines Creek Exit (420782-003)	547 Out	Glyphosate

Note: Standard TAT.

Relinquished By	Received By:
Date/Time 10/30/19 1500	Date/Time
	1031.19 0945
Date/Time	Date/Time
	2.5/2.9

11

Page 1 of 1

Calscience

ANALYTICAL REPORT

Eurofins Calscience LLC 7440 Lincoln Way Garden Grove, CA 92841 Tel: (714)895-5494

Laboratory Job ID: 570-11454-1

Client Project/Site: 420782

For:

Enthalpy Analytical LLC 931 W Barkley Ave Orange, California 92868

Attn: Incoming Reports

Inanhla

Authorized for release by: 11/6/2019 7:40:35 PM

Xuan Dang, Project Manager I (714)895-5494 xuandang@eurofinsus.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Qualifiers

Qualifiers		3
GC Semi VO		
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	
E	Result exceeded calibration range.	5
me	LCS Recovery is within Marginal Exdeedance (ME) control limit range (± 4 SD from the mean).	Ŭ
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	7
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	0
CFL	Contains Free Liquid	0
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO	Tavisity Faulty alant Quationt (Diavin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 570-11454-1

Laboratory: Eurofins Calscience LLC

Narrative

Job Narrative 570-11454-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 10/30/2019 4:01 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

GC Semi VOA

Method 8141A: The continuing calibration verification (CCV) associated with batch 570-30510 recovered above the upper control limit for Merphos. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: Ponds Inlet (420782-001) (570-11454-1), Ponds Outlet (420782-002) (570-11454-2), Haines Creek Exit (420782-003) (570-11454-3) and (CCV 570-30510/18)

Method 8141A: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 570-30026 and analytical batch 570-30510 recovered outside control limits for the following analytes: Azinphos-methyl, Fensulfothion and Merphos. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8141A: The closing continuing calibration verification (CCV) associated with batch 570-30510 recovered above the upper control limit for Azinphos-methyl, Chlorpyrifos, Coumaphos and Merphos. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: Ponds Inlet (420782-001) (570-11454-1), Ponds Outlet (420782-002) (570-11454-2), Haines Creek Exit (420782-003) (570-11454-3) and (CCV 570-30510/19).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 570-30026. LCS/LCSD performed to meet QC requirements.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Detection Summary	1
Client: Enthalpy Analytical LLC Job ID: 570-11454-1 Project/Site: 420782	2
Client Sample ID: Ponds Inlet (420782-001) Lab Sample ID: 570-11454-1	3
No Detections.	
Client Sample ID: Ponds Outlet (420782-002) Lab Sample ID: 570-11454-2	4
No Detections.	5
Client Sample ID: Haines Creek Exit (420782-003) Lab Sample ID: 570-11454-3	6
No Detections.	7
	8
	9
	10
	11
	12
	13
	14
	15

This Detection Summary does not include radiochemical test results.

Method: 8141A - Organophosphorous Pesticides (GC)

Client Sample ID: Ponds Inlet (420782-001) Date Collected: 10/30/19 09:25 Date Received: 10/30/19 16:01

Date Received. 10/30/19 16.01					_			
Analyte		Qualifier	RL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fac
Azinphos-methyl	ND	*	0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Bolstar	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Chlorpyrifos	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Coumaphos	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Demeton-o/s	ND		0.0096	mg/L		10/31/19 20:29	11/04/19 22:34	1
Diazinon	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Dichlorvos	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Disulfoton	ND		0.0096	mg/L		10/31/19 20:29	11/04/19 22:34	1
Ethoprop	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Fensulfothion	ND	*	0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Fenthion	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Merphos	ND	*	0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Methyl parathion	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Mevinphos	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Naled	ND		0.038	mg/L		10/31/19 20:29	11/04/19 22:34	1
Phorate	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Ronnel	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Stirophos	ND		0.019	mg/L		10/31/19 20:29	11/04/19 22:34	1
Tokuthion	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Trichloronate	ND		0.0048	mg/L		10/31/19 20:29	11/04/19 22:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tributyl phosphate	104		30 - 130			10/31/19 20:29	11/04/19 22:34	1

Client Sample ID: Ponds Outlet (420782-002)

Date Collected: 10/30/19 08:37

Date Received: 10/30/19 16:01		-			
Analyte	Result Qualifier	RL	Unit	D Prepared Analyzed D	il Fac
Azinphos-methyl	ND *	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Bolstar	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Chlorpyrifos	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Coumaphos	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Demeton-o/s	ND	0.0097	mg/L	10/31/19 20:29 11/04/19 23:22	1
Diazinon	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Dichlorvos	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Disulfoton	ND	0.0097	mg/L	10/31/19 20:29 11/04/19 23:22	1
Ethoprop	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Fensulfothion	ND *	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Fenthion	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Merphos	ND *	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Methyl parathion	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Mevinphos	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Naled	ND	0.039	mg/L	10/31/19 20:29 11/04/19 23:22	1
Phorate	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Ronnel	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Stirophos	ND	0.019	mg/L	10/31/19 20:29 11/04/19 23:22	1
Tokuthion	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1
Trichloronate	ND	0.0049	mg/L	10/31/19 20:29 11/04/19 23:22	1

Job ID: 570-11454-1

Matrix: Water

Lab Sample ID: 570-11454-1

11/6/2019

Lab Sample ID: 570-11454-2 Matrix: Water

Client Sample Results

Job ID: 570-11454-1

Method: 8141A - Organophosphorous Pesticides (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepare	ed	Analyzed	Dil Fac	
Tributyl phosphate	99		30 - 130		10/31/19 2	20:29 1	1/04/19 23:22	1	
Client Sample ID: Haine Date Collected: 10/30/19 Date Received: 10/30/19	9 10:20	782-003)			Lab	Samp	ole ID: 570-1 Matrix:	11454-3 : Water	5 6
Analyte		Qualifier	RL	Unit	D Prepare	ed	Analyzed	Dil Fac	
Azinphos-methyl	ND	*	0.0048	mg/L		20:29 11	1/05/19 00:09	1	
Bolstar	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Chlorpyrifos	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	8
Coumaphos	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Demeton-o/s	ND		0.0097	mg/L	10/31/19 2	20:29 1*	1/05/19 00:09	1	Ģ
Diazinon	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Dichlorvos	ND		0.0048	mg/L	10/31/19 2	20:29 1*	1/05/19 00:09	1	
Disulfoton	ND		0.0097	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Ethoprop	ND		0.0048	mg/L	10/31/19 2	20:29 1*	1/05/19 00:09	1	
Fensulfothion	ND	*	0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Fenthion	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Merphos	ND	*	0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Methyl parathion	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Mevinphos	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Naled	ND		0.039	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Phorate	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Ronnel	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Stirophos	ND		0.019	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Tokuthion	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Trichloronate	ND		0.0048	mg/L	10/31/19 2	20:29 11	1/05/19 00:09	1	
Surrogate	%Recovery	Qualifier	Limits		Prepare	ed	Analyzed	Dil Fac	
Tributyl phosphate	101		30 - 130		10/31/19 2		1/05/19 00:09	1	

Prep Type: Total/NA

Method: 8141A - Organophosphorous Pesticides (GC) Matrix: Water

cent Surrogate Recovery (Acceptance Limits)

Method: 8141A - Organophosphorous Pesticides (GC)

Lab Sample ID: MB 570-30026/1-A

Matrix: Water Analysis Batch: 30510

	MB	МВ							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	2
Azinphos-methyl	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Bolstar	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Chlorpyrifos	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Coumaphos	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Demeton-o/s	ND		0.010	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Diazinon	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Dichlorvos	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Disulfoton	ND		0.010	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Ethoprop	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Fensulfothion	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Fenthion	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Merphos	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Methyl parathion	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Mevinphos	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Naled	ND		0.040	mg/L		10/31/19 20:29	11/04/19 20:12	1	1
Phorate	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Ronnel	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Stirophos	ND		0.020	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Tokuthion	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
Trichloronate	ND		0.0050	mg/L		10/31/19 20:29	11/04/19 20:12	1	
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
Tributyl phosphate	106		30 - 130			10/31/19 20:29	11/04/19 20:12	1	

Lab Sample ID: LCS 570-30026/2-A Matrix: Water Analysis Batch: 30510

Analysis Batch: 30510			Spike	LCS	LCS				Prep Batch: 30026 %Rec.
Analyte			Added		Qualifier	Unit	D	%Rec	Limits
Azinphos-methyl			0.0400	0.05520	* me	mg/L		138	30 - 130
Bolstar			0.0400	0.04481		mg/L		112	30 - 130
Chlorpyrifos			0.0400	0.04605		mg/L		115	30 - 130
Coumaphos			0.0400	0.05014		mg/L		125	30 - 130
Diazinon			0.0400	0.05102		mg/L		128	30 - 130
Disulfoton			0.0400	0.04951		mg/L		124	30 - 130
Ethoprop			0.0400	0.05104		mg/L		128	30 - 130
Fensulfothion			0.0400	0.05415	* me	mg/L		135	30 - 130
Fenthion			0.0400	0.04922		mg/L		123	30 - 130
Merphos			0.0400	0.1021	E*	mg/L		255	30 - 130
Methyl parathion			0.0400	0.04713		mg/L		118	30 - 130
Phorate			0.0400	0.04723		mg/L		118	30 - 130
Ronnel			0.0400	0.04364		mg/L		109	30 - 130
Stirophos			0.0400	0.04702		mg/L		118	30 - 130
Tokuthion			0.0400	0.04541		mg/L		114	30 - 130
Trichloronate			0.0400	0.04881		mg/L		122	30 - 130
	LCS	LCS							
Surrogate	%Recovery		Limits						

Surrogate	%Recovery	Qualifier	Limits
Tributyl phosphate	114		30 - 130

Job ID: 570-11454-1

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 30026

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Eurofins Calscience LLC

Job ID: 570-11454-1

Client Sample ID: Lab Control Sample Dup

Method: 8141A - Organophosphorous Pesticides (GC)

Lab Sample ID:	LCSD	570-30026/3-A
Motrixy Motor		

	alei	
Analysis	Batch:	30510

	010-00020/0-A				· · · · ·		ampie	ID. Lat				
Matrix: Water									Prep Ty	pe: Tot	al/NA	
Analysis Batch: 3051	0								Prep E	Batch: 3	30026	÷
			Spike	LCSD	LCSD				%Rec.		RPD	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	i.
Azinphos-methyl			0.0400	0.05449	* me	mg/L		136	30 - 130	1	30	
Bolstar			0.0400	0.04435		mg/L		111	30 - 130	1	30	
Chlorpyrifos			0.0400	0.03996		mg/L		100	30 - 130	14	30	
Coumaphos			0.0400	0.04676		mg/L		117	30 - 130	7	30	
Diazinon			0.0400	0.04830		mg/L		121	30 - 130	5	30	
Disulfoton			0.0400	0.04874		mg/L		122	30 - 130	2	30	
Ethoprop			0.0400	0.04958		mg/L		124	30 - 130	3	30	
Fensulfothion			0.0400	0.05310	* me	mg/L		133	30 - 130	2	30	
Fenthion			0.0400	0.04821		mg/L		121	30 - 130	2	30	
Merphos			0.0400	0.09537	E*	mg/L		238	30 - 130	7	30	
Methyl parathion			0.0400	0.04235		mg/L		106	30 - 130	11	30	
Phorate			0.0400	0.04636		mg/L		116	30 - 130	2	30	
Ronnel			0.0400	0.04397		mg/L		110	30 - 130	1	30	
Stirophos			0.0400	0.04629		mg/L		116	30 - 130	2	30	
Tokuthion			0.0400	0.04430		mg/L		111	30 - 130	2	30	÷
Trichloronate			0.0400	0.04511		mg/L		113	30 - 130	8	30	
	LCSD	1000										
Surrogate	%Recovery		Limits									
		Quaimer										
Tributyl phosphate	109		30 - 130									

Client: Enthalpy Analytical LLC Project/Site: 420782

Method: 8141A - Organophosphorous Pesticides (GC)

Lab Sample ID: LCS 570-30026/2-A . Matrix: Wator

Matrix: Water	Spike	LCS	LCS			%Rec.	ME %Rec.	Prep Type: Total/N/ Marginal Exceedance
Analyte	Added	Result	Qualifier	Unit	%Rec	Limits	Limits	Status
Azinphos-methyl	0.0400	0.05520	* me	mg/L	138	30 - 130	13 - 147	ME ¹
Bolstar	0.0400	0.04481		mg/L	112	30 - 130	13 - 147	
Chlorpyrifos	0.0400	0.04605		mg/L	115	30 - 130	13 ₋ 147	
Coumaphos	0.0400	0.05014		mg/L	125	30 - 130	13 - 147	
Diazinon	0.0400	0.05102		mg/L	128	30 - 130	13 ₋ 147	
Disulfoton	0.0400	0.04951		mg/L	124	30 - 130	13 ₋ 147	
Ethoprop	0.0400	0.05104		mg/L	128	30 - 130	13 - 147	
Fensulfothion	0.0400	0.05415	* me	mg/L	135	30 - 130	13 ₋ 147	ME ¹
Fenthion	0.0400	0.04922		mg/L	123	30 - 130	13 - 147	
Merphos	0.0400	0.1021	Е*	mg/L	255	30 - 130	13 - 147	X
Methyl parathion	0.0400	0.04713		mg/L	118	30 - 130	13 ₋ 147	
Phorate	0.0400	0.04723		mg/L	118	30 - 130	13 - 147	
Ronnel	0.0400	0.04364		mg/L	109	30 - 130	13 - 147	
Stirophos	0.0400	0.04702		mg/L	118	30 - 130	13 - 147	
Tokuthion	0.0400	0.04541		mg/L	114	30 - 130	13 - 147	
Trichloronate	0.0400	0.04881		mg/L	122	30 - 130	13 - 147	
Summary								

Summary

Number of Marginal	Number of Marginal	Number of
Exceedances Found	Exceedances Allowed	Analytes Reported
2	1	16

ME1 = Marginal Exceedance and number of ME's found greater than allowed

X = % Recovery is greater than widest possible limit

Lab Sample ID: LCSD 570-30026/3-A **Matrix: Water**

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD			%Rec.	ME %Rec.	Marginal Exceedance
Analyte	Added	Result	Qualifier	Unit	%Rec	Limits	Limits	Status
Azinphos-methyl	0.0400	0.05449	* me	mg/L	136	30 - 130	13 - 147	ME ¹
Bolstar	0.0400	0.04435		mg/L	111	30 - 130	13 - 147	
Chlorpyrifos	0.0400	0.03996		mg/L	100	30 - 130	13 - 147	
Coumaphos	0.0400	0.04676		mg/L	117	30 - 130	13 - 147	
Diazinon	0.0400	0.04830		mg/L	121	30 - 130	13 ₋ 147	
Disulfoton	0.0400	0.04874		mg/L	122	30 - 130	13 ₋ 147	
Ethoprop	0.0400	0.04958		mg/L	124	30 - 130	13 ₋ 147	
Fensulfothion	0.0400	0.05310	* me	mg/L	133	30 - 130	13 ₋ 147	ME ¹
Fenthion	0.0400	0.04821		mg/L	121	30 - 130	13 - 147	
Merphos	0.0400	0.09537	E*	mg/L	238	30 - 130	13 ₋ 147	Х
Methyl parathion	0.0400	0.04235		mg/L	106	30 - 130	13 ₋ 147	
Phorate	0.0400	0.04636		mg/L	116	30 - 130	13 ₋ 147	
Ronnel	0.0400	0.04397		mg/L	110	30 - 130	13 - 147	
Stirophos	0.0400	0.04629		mg/L	116	30 - 130	13 - 147	
Tokuthion	0.0400	0.04430		mg/L	111	30 - 130	13 - 147	
Trichloronate	0.0400	0.04511		mg/L	113	30 - 130	13 - 147	

anninar y		
Number of	Number of Marginal	Number of Marginal
Analytes Reported	Exceedances Allowed	Exceedances Found
16	1	2

Job ID: 570-11454-1

Client Sample ID: Lab Control Sample

5 8 Marginal Exceedance (ME) Summary

Client: Enthalpy Analytical LLC Project/Site: 420782

 ME^1 = Marginal Exceedance and number of ME's found greater than allowed X = % Recovery is greater than widest possible limit

Eurofins Calscience LLC

QC Association Summary

Job ID: 570-11454-1

GC Semi VOA

Prep Batch: 30026

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-11454-1	Ponds Inlet (420782-001)	Total/NA	Water	3510C	
570-11454-2	Ponds Outlet (420782-002)	Total/NA	Water	3510C	
570-11454-3	Haines Creek Exit (420782-003)	Total/NA	Water	3510C	
MB 570-30026/1-A	Method Blank	Total/NA	Water	3510C	
LCS 570-30026/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 570-30026/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 30510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-11454-1	Ponds Inlet (420782-001)	Total/NA	Water	8141A	30026
570-11454-2	Ponds Outlet (420782-002)	Total/NA	Water	8141A	30026
570-11454-3	Haines Creek Exit (420782-003)	Total/NA	Water	8141A	30026
MB 570-30026/1-A	Method Blank	Total/NA	Water	8141A	30026
LCS 570-30026/2-A	Lab Control Sample	Total/NA	Water	8141A	30026
LCSD 570-30026/3-A	Lab Control Sample Dup	Total/NA	Water	8141A	30026

Client Sample ID: Ponds Inlet (420782-001) Date Collected: 10/30/19 09:25 Date Received: 10/30/19 16:01

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1040.1 mL	10 mL	30026	10/31/19 20:29	SP7J	ECL 1
Total/NA	Analysis	8141A		1			30510	11/04/19 22:34	UJ3K	ECL 1

Lab Chronicle

Instrument ID: GC69

Client Sample ID: Ponds Outlet (420782-002) Date Collected: 10/30/19 08:37 Date Received: 10/30/19 16:01

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1030.8 mL	10 mL	30026	10/31/19 20:29	SP7J	ECL 1
Total/NA	Analysis	8141A		1			30510	11/04/19 23:22	UJ3K	ECL 1
	Instrumer	t ID: GC69								

Client Sample ID: Haines Creek Exit (420782-003) Date Collected: 10/30/19 10:20 Date Received: 10/30/19 16:01

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1034.9 mL	10 mL	30026	10/31/19 20:29	SP7J	ECL 1
Total/NA	Analysis	8141A		1			30510	11/05/19 00:09	UJ3K	ECL 1
	Instrumen	t ID: GC69								

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 570-11454-1

Lab Sample ID: 570-11454-2

Lab Sample ID: 570-11454-3

Eurofins Calscience LLC

Client: Enthalpy Analytical LLC Project/Site: 420782 Job ID: 570-11454-1

Laboratory: Eurofins Calscience LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arizona	State	AZ0781	03-13-20
California	SCAQMD LAP	17LA0919	11-30-19
California	State	2944	09-29-20
Hawaii	State	<cert no.=""></cert>	07-02-20
Nevada	State	CA00111	07-31-20
Oregon	NELAP	CA300001	01-29-20

Eurofins Calscience LLC

Client: Enthalpy Analytical LLC Project/Site: 420782

Method	Method Description	Protocol	Laboratory
8141A	Organophosphorous Pesticides (GC)	SW846	ECL 1
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	ECL 1

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Sample Summary

Client: Enthalpy Analytical LLC Project/Site: 420782

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
570-11454-1	Ponds Inlet (420782-001)	Water	10/30/19 09:25	10/30/19 16:01	
570-11454-2	Ponds Outlet (420782-002)	Water	10/30/19 08:37	10/30/19 16:01	
570-11454-3	Haines Creek Exit (420782-003)	Water	10/30/19 10:20	10/30/19 16:01	

Enthalpy Analytical Formerly Associated Labs

Formerly Associated Labs 1 Park Plaza, Suite 1000 Irvine, CA 92614 Tel: 714.771.6900 Fax: 714.538.1209 info-sc@enthalpy.com

Subcontract Laboratory:

Eurofins CalScience - Sub 7440 Lincoln Way Garden Grove, CA 92841

ATTN: Xuan Dang PO# 1041647

570-11454 Chain of Custody

Project:	420782	Due:							
PM:	Diane Galva	in							
Email:	diane.galvar	liane.galvan@enthalpy.com							
CC:	incomingrep	orts@entha	alpy.com						
Require:	EDD								
Report To:	MDL								

Matrix Sampled Sample ID Analysis Comment Water 10/30/19 09:25 Ponds Inlet (420782-001) 8141_Out **Organophosphorus Pesticides** 10/30/19 08:37 Ponds Outlet (420782-002) 8141_Out Water **Organophosphorus Pesticides** 10/30/19 10:20 Haines Creek Exit (420782-003) 8141_Out Organophosphorus Pesticides Water

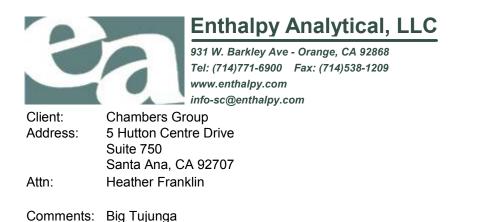
Note:

Note:

Standard TAT.

Relinquished By	Received By: Danugle Ec
Date/Time	Date/Time 10/30/19 16=0
1030-19/16:01	
Date/Time	Date/Time

2.5/3.0 Scb


Client: Enthalpy Analytical LLC

Login Number: 11454 List Number: 1 Creator: Ramos, Maribel

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-11454-1

List Source: Eurofins Calscience

Lab Request: 421379 Report Date: 11/26/2019 Date Received: 11/14/2019 Client ID: 14294

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #Client Sample ID421379-001Ponds Inlet421379-002Ponds Outlet421379-003Haines Creek Exit

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

M. Malva

Report Review performed by: Diane Galvan, Project Manager

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Water	Client:	Chambers	Group		Col	lector: client			
Sampled: 11/14/2019 08:57	Site:								
Sample #: 421379-001	Client Sample #:	Ponds Inlet	I		Sample	туре:			
Analyte	F	Result	DF	RDL	Units	Prepared	Analyzed	d By	Notes
Method: EPA 608	Prep Method: 351	0C					QCBatch	ID: QO	C1208963
4,4'-DDD		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
4,4'-DDE		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
4,4'-DDT		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
a-BHC		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Aldrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
b-BHC		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Chlordane (technical)		ND	1	1	ug/L	11/19/19	11/20/19	CBR	
d-BHC		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Dieldrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan I		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan II		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan sulfate		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin aldehyde		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin Ketone		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Heptachlor		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Heptachlor epoxide		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Lindane (Gamma-BHC)		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Methoxychlor		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
PCB-1016		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	L
PCB-1221		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1232		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1242		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1248		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1254		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1260		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
Toxaphene		ND	1	2	ug/L	11/19/19	11/20/19	CBR	
<u>Surrogate</u>		<u>% Rec</u>	covery	<u>Limits</u>	<u>Notes</u>				
Decachlorobiphenyl DCB (SUR,)	62	2	31-150					
Tetrachloro-m-xylene TCMX (S		51	1	30-145					

Matrix: Water	Client:	Chambe	rs Group		Col	lector: client			
Sampled: 11/14/2019 08:48	Site:								
Sample #: 421379-002	Client Sample #:	Ponds C	utlet		Sample	Туре:			
Analyte	F	Result	DF	RDL	Units	Prepared	Analyzed	d By	Notes
Method: EPA 608	Prep Method: 351	0C					QCBatch	ID: QC	C1208963
4,4'-DDD		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
4,4'-DDE		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
4,4'-DDT		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
a-BHC		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Aldrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
b-BHC		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Chlordane (technical)		ND	1	1	ug/L	11/19/19	11/20/19	CBR	
d-BHC		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Dieldrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan I		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan II		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan sulfate		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin aldehyde		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin Ketone		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Heptachlor		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Heptachlor epoxide		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Lindane (Gamma-BHC)		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Methoxychlor		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
PCB-1016		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	L
PCB-1221		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1232		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1242		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1248		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1254		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1260		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
Toxaphene		ND	1	2	ug/L	11/19/19	11/20/19	CBR	
<u>Surrogate</u>		<u>% F</u>	Recovery	Limits	<u>Notes</u>				
Decachlorobiphenyl DCB (SUR	?)		67	31-150					
Tetrachloro-m-xylene TCMX (S	UR)		52	30-145					

Matrix: Water	Client: C	hambers	Group		Col	lector: client			
Sampled: 11/14/2019 08:09	Site:								
Sample #: <u>421379-003</u>	Client Sample #: H	laines Cr	eek Exit		Sample	Туре:			
Analyte	Re	esult	DF	RDL	Units	Prepared	Analyzed	d By	Notes
Method: EPA 608	Prep Method: 35100	С					QCBatch	ID: QC	01208963
4,4'-DDD		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
4,4'-DDE		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
4,4'-DDT	l	ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
a-BHC	l	ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Aldrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
b-BHC	I	ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Chlordane (technical)	l	ND	1	1	ug/L	11/19/19	11/20/19	CBR	
d-BHC	l	ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Dieldrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan I		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan II		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endosulfan sulfate		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin aldehyde		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Endrin Ketone		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Heptachlor		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Heptachlor epoxide		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Lindane (Gamma-BHC)		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
Methoxychlor		ND	1	0.1	ug/L	11/19/19	11/20/19	CBR	
PCB-1016		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	L
PCB-1221		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1232		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1242		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1248		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1254		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
PCB-1260		ND	1	0.5	ug/L	11/19/19	11/20/19	CBR	
Toxaphene	I	ND	1	2	ug/L	11/19/19	11/20/19	CBR	
Surrogate		<u>% Re</u>	covery	<u>Limits</u>	<u>Notes</u>				
Decachlorobiphenyl DCB (SUR)	6	4	31-150					
Tetrachloro-m-xylene TCMX (S	UR)	4	5	30-145					

QCBatchID:	QC1208963	Analyst:	Abanh	Method:	EPA 608			
Matrix:	Water	Analyzed:	11/19/2019	Instrument:	SVOA-GC (gro	oup)		
			Bla	ank Summal	v			
			Blank					
	Analyte		Result	Units		RDL	Notes	
QC1208963M	B1				11			
4,4'-DDD			ND	ug/L		0.1		
4,4'-DDE			ND	ug/L		0.1		
4,4'-DDT			ND	ug/L		0.1		
a-BHC			ND	ug/L		0.1		
Aldrin			ND	ug/L		0.1		
b-BHC			ND	ug/L		0.1		
Chlordane (1	technical)		ND	ug/L		1		
d-BHC			ND	ug/L		0.1		
Dieldrin			ND	ug/L		0.1		
Endosulfan	I		ND	ug/L		0.1		
Endosulfan	II		ND	ug/L		0.1		
Endosulfan	sulfate		ND	ug/L		0.1		
Endrin			ND	ug/L		0.1		
Endrin aldeh	nyde		ND	ug/L		0.1		
Endrin Keto	ne		ND	ug/L		0.1		
Heptachlor			ND	ug/L		0.1		
Heptachlor e	epoxide		ND	ug/L		0.1		
	amma-BHC)		ND	ug/L		0.1		
Methoxychlo			ND	ug/L		0.1		
PCB-1016			ND	ug/L		0.5		
PCB-1221			ND	ug/L		0.5		
PCB-1232			ND	ug/L		0.5		
PCB-1242			ND	ug/L		0.5		
PCB-1248			ND	ug/L		0.5		
PCB-1254			ND	ug/L		0.5		
PCB-1260			ND	ug/L		0.5		
Toxaphene			ND	ug/L		2		

Lab Con	trol Sp	ike/ Lab	Contro	ol Spike	Duplica	te Sun	nmary				
	Spike	Amount	Spike	Result		Reco	veries		Limi	ts	
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1208963LCS1, QC1208963LCSD1						•					
4,4'-DDD	0.5	0.5	0.37	0.36	ug/L	74	72	3	51-119	20	
4,4'-DDE	0.5	0.5	0.35	0.34	ug/L	70	68	3	44-123	20	
4,4'-DDT	0.5	0.5	0.33	0.34	ug/L	66	68	3	58-118	20	
a-BHC	0.5	0.5	0.33	0.34	ug/L	66	68	3	36-127	20	
Aldrin	0.5	0.5	0.28	0.28	ug/L	56	56	0	39-118	20	
b-BHC	0.5	0.5	0.31	0.31	ug/L	62	62	0	54-119	20	
d-BHC	0.5	0.5	0.31	0.31	ug/L	62	62	0	47-121	20	
Dieldrin	0.5	0.5	0.34	0.34	ug/L	68	68	0	53-112	20	
Endosulfan I	0.5	0.5	0.35	0.35	ug/L	70	70	0	48-117	20	
Endosulfan II	0.5	0.5	0.35	0.35	ug/L	70	70	0	53-113	20	
Endosulfan sulfate	0.5	0.5	0.35	0.35	ug/L	70	70	0	58-111	20	
Endrin	0.5	0.5	0.33	0.33	ug/L	66	66	0	54-144	20	
Endrin aldehyde	0.5	0.5	0.32	0.32	ug/L	64	64	0	53-108	20	
Endrin Ketone	0.5	0.5	0.38	0.38	ug/L	76	76	0	50-116	20	
Heptachlor	0.5	0.5	0.30	0.30	ug/L	60	60	0	41-123	20	
Heptachlor epoxide	0.5	0.5	0.33	0.33	ug/L	66	66	0	44-113	20	
Lindane (Gamma-BHC)	0.5	0.5	0.33	0.33	ug/L	66	66	0	41-124	20	
Methoxychlor	0.5	0.5	0.39	0.39	ug/L	78	78	0	52-174	20	
PCB-1016	5	5	3.4	3.2	ug/L	68	64	6	70-130	20	L
PCB-1260	5	5	3.5	3.5	ug/L	70	70	0	70-130	20	

QCBatchID: QC1208963	Analyst: Abanh	Method: EPA 608	
Matrix: Water	Analyzed: 11/19/2019	Instrument: SVOA-GC (group)	

Data Qualifiers and Definitions

Qualifiers	
A	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
С	Possible laboratory contamination.
D	RPD was not within control limits. The sample data was reported without further clarification.
D1	Lesser amount of sample was used due to insufficient amount of sample supplied.
D2	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
E	Concentration is estimated because it exceeds the quantification limits of the method.
I ID	The sample was read outside of the method required incubation period.
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.
J L	Reported value is estimated The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample
-	data was reported with gualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.
м	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated
	LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits. Sample result is estimated.
N1	Sample chromatography does not match the specified TPH standard pattern.
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
Р	Sample was received without proper preservation according to EPA guidelines.
P1	Temperature of sample storage refrigerator was out of acceptance limits.
P2	The sample was preserved within 24 hours of collection in accordance with EPA 218.6.
P3	Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended due to potential loss of target analytes. Results may be biased low.
Q1	Analyte Calibration Verification exceeds criteria. The result is estimated.
Q2	Analyte calibration was not verified and the result was estimated.
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate recoveries in the associated batch QC met recovery criteria.
S3 T	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
T T1	Sample was extracted/analyzed past the holding time. Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).
T2	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.
T3	Sample received and analyzed out of hold time per client's request.
T4	Sample was analyzed out of hold time per client's request.
T5	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.
T6	Hold time is indeterminable due to unspecified sampling time.
T7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.
Definitions	
DF	z Dilution Factor
MDL	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.
ND	Analyte was not detected or was less than the detection limit.
NR	Not Reported. See Report Comments.
RDL	Reporting Detection Limit
TIC	Tentatively Identified Compounds

Enthalpy Analytical, LLC

			V X X .				Chain of Custody Record	tody Rec	ord	Turn	Around Tii	me (rush	by advanc	Turn Around Time (rush by advanced notice only)	only)
			ENIDALY			Lab No:	421	379		Standard:		5 Day:		3 Day:	
						Page:		of	÷.	2 Day:		1 Day:	•	Custom TAT:	
	Enthalp) 931 W. Barkle	/ Analytica ₂ y Avenue, Or	Enthalpy Analytical - Orange 931 W. Barkley Avenue, Orange, CA 92868	ø		Matrix:	A = Air S = Soil/Solid Water DW = Drinking PP = Pure Product	/Solid rinking Wat oduct SEA	S = Soil/Solid DW = Drinking Wate SD = Sediment = Pure Product SEA = Sea Water	ent W =	Preservatives: $Na_2S_2O_3$ $4 = H_2SO_4$	2 = HCl 3 5 = NaOH	1 = = HNO ₃ 6 = Other	Sample Receipt Temp: $q.2$ 0,6	eipt Temp: / 0, b
	μd	Phone 714-771-6900	6900			-,	SW = Swab T = Tissue		WP = Wipe O = Other	Other				/ (lab use only)	only)
כר	CUSTOMER INFORMATION	DRMATION			PROJEC		FINFORMATION		311	Analysis Request	juest		Test Instruc	Test Instructions / Comments	nents
Company:	Chambers Exoust Inc.	Errow 1		Quote #:					1010						
Report To:	Meather Franklin	CINULIN		Proj. Name:	te: Djá		Turnag		100U						ı
Email:	hfranklin @ chambersgroupine. rang Proj. #:	chambersqr	roupinc. ram	Proj. #:		ĺ			0675 6						
Address:		Þ		P.O.#:					<u>5</u>						
				Address:											
Phone:	970-420-0816	-0816		Global ID:					<u>-0[r</u>						
Fax:				Sampled By:	By:				1201	-					
	Sample ID		Sampling		Sampling Time	Matrix	Container No. / Size	Pres.	Deddu						
1 David	talut		61/h(/i)	0	n0 22 an	N.			*						
<u>ب</u>	Dutlet		h1/11/10		084K am	Ŵ									
3 Haines	Haines Creek Exit	xit	11/14/10		0809 am	M			\ →						
4			-												
5															
6															
7	, , , , , , , , , , , , , , , , , , ,						-								
8							5							т.,	
6												-			
10															
		•1	Signature			Pri	Print Name		,	Company / Title	Title		Date	te / Time	
¹ Relinquished By:	By:	NP ?-			Innac	MAUNICIÓ	BONEZ		Clambe	Chambers Brown	/ Biologisa	$F \mid i1/$	14/19	/ OU:53	s pm
¹ Received By:	.)	al la	\mathbb{N}		$E(\tilde{c})$	Zabeth	eth Dami	22		SA' (D I	11/1	14/19	4:53	Par.
² Relinquished By:	By:	2										•			
² Received By:															
³ Relinquished By:	l By:														
³ Received By:							Te								

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Chambers Group Inc.	Project: Big Tujunga			
Date Received: 11/14/19	Sampler's Name Present:	Yes	√ No	
Section 2				
Sample(s) received in a cooler? \checkmark Yes, How many? <u>1</u>	NO (skip section 2)	-	e Temp (°C) (No Cooler)	-
Sample Temp (°C), One from each cooler: #1: 4.2				_
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptan- the same day as sample receipt to have a higher temperatur		•	-	s collected
Shipping Information:	e as long as there is evidence that col	onng nas beg	un.;	·
Section 3				
Was the cooler packed with: 🖌 Ice 🗌 Ice Packs	Bubble Wrap Styro	foam		
Paper None	Other			
Cooler Temp (°C): #1: <u>0.6</u> #2:	#3:	_#4:		
Section 4		YES	NO	N/A
Was a COC received?		1		
Are sample IDs present?		✓		
Are sampling dates & times present?		✓		
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		√		
Are custody seals present?			✓	
If custody seals are present, were they intact?				√
Are all samples sealed in plastic bags? (Recommended for	_, ,			✓
Did all samples arrive intact? If no, indicate in Section 4 be	low.			
Did all bottle labels agree with COC? (ID, dates and times) Were the samples collected in the correct containers for t	he required tests?			
Are the containers labeled with the correct preservat	•	*		\sim
Is there headspace in the VOA vials greater than 5-6 mm in				V
Was a sufficient amount of sample submitted for the requ				Ŷ
			I	
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager notified?	Verbal PM Initials:	Date/Time		
	Email (email sent to/o	on):	/	
Project Manager's response:				
Completed Bur Cin	Date:			
Completed By:	Jate: ////////////////////////////////////			
Enthalpy Analytical, a subsidiary of Mo	• •			
931 W. Barkley Ave, Orange, CA 92868 • 1 www.enthalpy.	• • • • • •			

Sample Acceptance Checklist - Rev 4, 8/8/2017