

September 6th, 2011

Final, Revision 6
2nd Submittal

INFORMATION EXCHANGE
NETWORK

Recommendations
for the implementat ion of

new Traff ic Control System
Command/Data Interface Programs

LOS ANGELES COUNTY

INFORMATION EXCHANGE NETWORK (IEN)

RECOMMENDATIONS
FOR THE IMPLEMENTATION OF

NEW TRAFFIC CONTROL SYSTEM
COMMAND/DATA INTERFACE (CDI) PROGRAMS

FINAL – REVISION 6

(2nd Submittal)

Prepared for:
Los Angeles County

Department of Public Works

Prepared by:

626 Wilshire Boulevard
Suite 818

Los Angeles, CA 90017

September 6th, 2011

INFORMATION EXCHANGE NETWORK

Recommendations
For The Implementation Of
New Traffic Control System

Command/Data Interface Programs

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page ii September 6th, 2011

 TABLE OF CONTENTS PAGE #

1. INTRODUCTION ... 1-1

1.1 Purpose of the Document ... 1-1
1.2 CDI Interface History .. 1-1
1.3 Intended Audience ... 1-1
1.4 Assumptions ... 1-1

2. CHANGING FROM VERSION 2 TO VERSION 3 .. 2-2

2.1 New Interfaces ... 2-2
2.1.1 Explicit Interface Definition in IDL ... 2-2
2.1.2 Increased Device Identifier Size .. 2-2
2.1.3 Additional Intersection Configuration Data ... 2-2
2.1.4 Individual Device Error Return Codes ... 2-2

2.2 Modifying an Existing CDI Program ... 2-3
2.2.1 Changes to DataAccessorFactory and CommandAccessorFactory Objects 2-3
2.2.2 Changing the DataAccessor Object to Implement MCSDataAccessor 2-3
2.2.3 Changing the CommandAccessor Object to Implement ..
 MCSCommandAccessor .. 2-3

3. TCS CDI INTERFACE REQUIREMENTS ... 3-1

3.1 CORBA Interfaces ... 3-1
3.1.1 IEN.idl .. 3-2
3.1.2 IENRTData.idl ... 3-2
3.1.3 TCS.idl ... 3-2

3.1.3.1 Mode Enumeration .. 3-2
3.1.3.2 MCSDevice and Device Structures .. 3-3
3.1.3.3 MCSDeviceList and DeviceList Sequences .. 3-4
3.1.3.4 Version Structure ... 3-4
3.1.3.5 Status Enumeration .. 3-4
3.1.3.6 ConfigurationAccessor Interface ... 3-5

3.1.4 IENTCSData.idl ... 3-6
3.1.4.1 IEN_EventType Enumeration .. 3-6
3.1.4.2 SignalControlMode Enumeration .. 3-8
3.1.4.3 IntersectionSignalState Enumeration .. 3-8
3.1.4.4 ControllerResponseState Enumeration .. 3-9
3.1.4.5 PreemptType Enumeration .. 3-9
3.1.4.6 CommState Enumeration ... 3-10
3.1.4.7 Controller Alarm Bitmasks .. 3-10
3.1.4.8 DetectorStatus Enumeration .. 3-11
3.1.4.9 DetectorClass Enumeration ... 3-11
3.1.4.10 DetectorType Enumeration .. 3-12
3.1.4.11 Direction Enumeration .. 3-13

3.1.5 TCSData.idl .. 3-14
3.1.5.1 IEN CDI Version 2 Interface Version Constants ... 3-14
3.1.5.2 DataAccessor Interface .. 3-14

3.1.5.2.1 clientName Attribute .. 3-15
3.1.5.2.2 destroy Method .. 3-15
3.1.5.2.3 getDeviceList Method .. 3-15
3.1.5.2.4 deviceDataTypes Method .. 3-16

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page iii September 6th, 2011

3.1.5.2.5 getDeviceEventDataList Method ... 3-16
3.1.5.3 DataAccessorFactory Interface .. 3-16

3.1.6 MCSData.idl ... 3-17
3.1.6.1 MCSDeviceID typedef .. 3-17
3.1.6.2 MCSDeviceIDList Sequence ... 3-17
3.1.6.3 MCSDevice Structure .. 3-17
3.1.6.4 MCSDeviceList Sequence ... 3-17
3.1.6.5 EventTypeList Sequence ... 3-18

3.1.7 MCSDataInterface.idl .. 3-18
3.1.7.1 CDI Version 3 Interface Version Number Constants .. 3-18
3.1.7.2 Device Event Structures .. 3-18

3.1.7.2.1 IntersectionInfo Structure .. 3-18
3.1.7.2.2 IntersectionRTSummary Structure .. 3-21
3.1.7.2.3 IntersectionRTStatus Structure .. 3-22
3.1.7.2.4 PhaseStateData Structure ... 3-23
3.1.7.2.5 PedestrianPhaseState Structure .. 3-23
3.1.7.2.6 VehicleCallState Structure ... 3-24
3.1.7.2.7 PhaseTime Structure .. 3-25
3.1.7.2.8 LastCyclePhaseData Structure ... 3-25
3.1.7.2.9 TpPhaseData Structure... 3-26
3.1.7.2.10 DetectorInfo Structure ... 3-27
3.1.7.2.11 DetectorState Structure .. 3-28
3.1.7.2.12 SectionInfo Structure ... 3-29
3.1.7.2.13 SectionState Structure .. 3-30
3.1.7.2.14 DetectorStationInfo and DetectorStationState Structures 3-30

3.1.7.3 SiteUpdate Component Structures ... 3-31
3.1.7.3.1 DeviceConfigGroup Structure ... 3-31
3.1.7.3.2 DeviceStateGroup Structure .. 3-31
3.1.7.3.3 RealTimeUpdateGroup Structure .. 3-32

3.1.7.4 SiteUpdate Structure .. 3-33
3.1.7.5 Structures and Sequences Used in MCSDataAccessor Methods 3-34

3.1.7.5.1 MCSDeviceDataTypes Structure ... 3-34
3.1.7.5.2 MCSDeviceDataTypeList Sequence.. 3-35
3.1.7.5.3 MCSDeviceRequest Structure ... 3-35
3.1.7.5.4 MCSDeviceRequestList Sequence .. 3-35
3.1.7.5.5 ReasonForRequestFailure Enumeration .. 3-35
3.1.7.5.6 RequestFailureStatus Structure .. 3-36
3.1.7.5.7 RequestFailureStatusSeq Sequence ... 3-36

3.1.7.6 MCSDataAccessor Interface ... 3-37
3.1.8 TCSCommand.idl ... 3-39

3.1.8.1 CommandsNotAccepted Exception ... 3-39
3.1.8.2 CommandAccessor Interface ... 3-39
3.1.8.3 CommandAccessorFactory Interface ... 3-41

3.1.9 MCSCommand.idl ... 3-42
3.1.9.1 MCS Command Interface Version Numbers ... 3-42
3.1.9.2 CommandResult Structure ... 3-42
3.1.9.3 Command Exceptions .. 3-43
3.1.9.4 MCSCommandAccessor Interface .. 3-44

3.1.9.4.1 setCDIPlan32 Method .. 3-46
3.1.9.4.2 changeMode32 Method ... 3-47
3.1.9.4.3 releaseControl 32Method ... 3-47

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page iv September 6th, 2011

3.1.9.4.4 flash32 Method .. 3-47
3.2 TCS CDI Performance Requirements .. 3-47

3.2.1 Data Access Requirements ... 3-47
3.2.2 Data Reporting Requirements .. 3-48

3.2.2.1 IEN_INTERSECTIONINFO ... 3-49
3.2.2.2 IEN_INTERSECTIONRTSTATUS .. 3-49
3.2.2.3 IEN_INTERSECTIONRTSUMMARY .. 3-49
3.2.2.4 IEN_PHASE_STATEDATA .. 3-50
3.2.2.5 IEN_PEDPHASE_STATEDATA ... 3-50
3.2.2.6 IEN_VEHCALL_STATEDATA .. 3-50
3.2.2.7 IEN_LASTCYCLE_PHASEDATA .. 3-50
3.2.2.8 IEN_TP_PHASEDATA .. 3-51
3.2.2.9 IEN_DETECTORINFO .. 3-51
3.2.2.10 IEN_DETECTORSTATE ... 3-51
3.2.2.11 IEN_SECTIONINFO .. 3-51
3.2.2.12 IEN_SECTIONSTATE ... 3-51

3.2.3 Command Execution Requirements ... 3-52
3.3 Usage of the CORBA Naming Service .. 3-52

3.3.1 IEN Naming Service Location ... 3-52
3.3.2 Published Names .. 3-52

3.4 Firewall Considerations ... 3-53

4. EXAMPLE IMPLEMENTATION .. 4-1

4.1 CORBA ORB Used ... 4-1
4.2 Implementation Environment .. 4-1
4.3 Configuration Data ... 4-1
4.4 Important CDI Methods ... 4-1

4.4.1 CDI Constructor ... 4-1
4.4.2 TransSuite® TCS Main CDI Thread ... 4-1
4.4.3 resolveNamingContext method .. 4-3
4.4.4 bindFactories Method ... 4-5
4.4.5 performWork Method .. 4-6
4.4.6 cleanup method .. 4-7
4.4.7 unbindFactories method ... 4-8

5. APPENDICES ... 5-1

5.1 Appendix A: TCS CDI CORBA IDL Files ... 5-1
5.1.1 IEN.idl .. 5-1
5.1.2 IENRTData.idl ... 5-13
5.1.3 TCS.idl ... 5-16
5.1.4 IENTCSData.idl ... 5-21
5.1.5 MCSData.idl ... 5-33
5.1.6 MCSDataInterface.idl .. 5-35
5.1.7 Tcscommand.idl ... 5-56
5.1.8 Mcscommand.idl .. 5-61

5.2 Appendix B: Example CDI Main Class ... 5-67
5.3 Appendix C: Diagnostic Settings in the Site Server Program .. 5-80

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page v September 6th, 2011

 TABLE OF EXHIBITS PAGE #

Table 2-1: Additional Version 3 Intersection Configuration Data ... 2-2

Table 2-2: Methods Replaced in the MCSDataAccessor Interface .. 2-3

Table 2-3: Methods Changed in the MCSCommandAccessor Interface ... 2-5

Table 3-1: Commanded Intersection Control Modes ... 3-3

Table 3-2: IEN Event Types and Data Structures .. 3-7

Table 3-3: Example Controller Type Strings ... 3-20

Table 3-4: IEN Event Types .. 3-48

Table 3-5: CDI Names in the Naming Service .. 3-52

Table 5-1: Diagnostic Levels for the Site Server ... 5-80

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page vi September 6th, 2011

REVISION HISTORY

VERSION DATE DESCRIPTION

Final 5/24/2004 • Final (Original Submittal)

Final – Revision 1 9/23/2004
• Response to BI Tran Questions
• Prioritize the IEN’s “Inbound” TCS

CDI Data Requirements

Final – Revision 2 11/19/2004
• Update IDL related sections with

latest TransCore version

Final – Revision 3 1/20/2005
• Update Section 2.4 TCS CDI Event

Format according to IEN
implementation

Final – Revision 4 1/03/2006
• Series 2000 CDI Software

Modifications

Final – Revision 5 5/19/2006 • Minor changes to detector status field
descriptions

Final – Revision 6 (1st
Submittal)
Final – Revision 6 (2nd
Submittal)

6/29/2009

9/6/2011

• Changes for the IEN Multiple Corridor
Server (MCS) Project – Version 3 of
the CDI

• Addresses minor LA County
comments

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 1-1 September 6th, 2011

1. INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

The Los Angeles County Information Exchange Network (IEN) uses command/data interface
(CDI) programs to connect to various traffic control systems. A CDI allows the IEN to read a
limited set of intersection, section, and detector data from a traffic control system (TCS), and
enables the IEN to send a limited set of commands to intersections and sections on the TCS.

The IEN communicates with TCS CDI programs using the Common Object Request Broker
Architecture (CORBA). In CORBA, interfaces are defined in Interface Definition Language
(IDL) files. They define the functionality of a server program without specifying its
implementation details. Interfaces expose (specify) methods and attributes that are implemented
by CORBA servers. A TCS CDI must support the set of CORBA interfaces defined in this
document.

This document will describe how CDI programs must implement these interfaces, and provide
implementation guidelines for use by the developers of other TCS systems when they create their
own TCS CDI applications. This document includes an example CDI based on the CDI that
TransCore wrote for its own TransSuite® TCS.

1.2 CDI INTERFACE HISTORY

The IEN has used three versions of the command/data interface. Version 1 was used in the San
Gabriel Valley Pilot Project and only communicated with TransCore’s Series 2000 TCS.
Version 2 was created for TCS vendors other than TransCore, and was the version documented
in all revisions of this document before Revision 6. Version 3 of the CDI has been created for
the IEN Multiple Corridor Server (MCS) Project.

1.3 INTENDED AUDIENCE

Readers of this document are assumed to be software developers who are implementing a new
CDI for the IEN. They should have a working knowledge of CORBA programming in C++.
They should also understand the basic concepts of a computerized traffic control system.

1.4 ASSUMPTIONS

The IEN Site Server application communicates with TCS CDI programs. It uses the JacORB
ORB, which implements Version 2.3 of the CORBA standard. TCS CDI Developers must use
an ORB implementation that supports at least Version 2.2 of the CORBA Specification.

The Los Angeles County Department of Public Works (LA County) holds the copyright to the
source code developed by TransCore specifically for the IEN program. LA County may grant
developers of TCS CDI programs the right to view or copy the source code of the sample CDI
shown in this document, which may be used as a guide to development of other CDIs.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 2-2 September 6th, 2011

2. CHANGING FROM VERSION 2 TO VERSION 3

This section describes the changes between Version 2 of the CDI and Version 3 and how to
modify an existing Version 2 interface program to support Version 3.

2.1 NEW INTERFACES

In Version 3 of the CDI, new MCSDataAccessor and MCSCommandAccessor interfaces have
been derived from the DataAccessor and CommandAccessor interfaces from Version 2 of the
CDI. The old interfaces are still defined in the IDL because the IEN Site Server process must
support both Versions of the interface.

2.1.1 Explicit Inter face Definition in IDL

The MCSDataAccessor and MCSCommandAccessor interfaces explicitly define all parts of the
interface formerly governed by convention. The new interfaces use IDL enumerations and
structures to define device codes and data structures received from and sent to the CDI rather
than integers and sequences of integers. This change should simplify the process of providing
device status data for the IEN Site Server, which is the most important task of the CDI.

2.1.2 Increased Device Identifier Size

All IEN device identifiers have been increased in size from 16 bits to 32 bits. Several traffic
control systems use device identifiers larger than 65,535, the former maximum size for device
identifiers. New methods have been defined in the MCSDataAccessor and
MCSCommandAccessor interfaces that accept 32-bit device identifiers.

2.1.3 Additional Intersection Configuration Data

Version 3 of the CDI requests more intersection configuration data from the traffic control
system. See Table 2-1 below for a list of new intersection configuration data requested.

Table 2-1: Additional Version 3 Intersection Configuration Data

NEW FIELD US AGE
mainStreet Name of main street for the intersection.
crossStreet Name of cross street for the intersection.
mainStreetDirection Direction of traffic flow on the main street.
latitude Latitude of the intersection in microdegrees.
longitude Longitude of the intersection in microdegrees.

2.1.4 Individual Device Error Return Codes

In Version 3 of the CDI, the data request and command methods of the CDI can return error
codes for each device for which access failed. The corresponding methods in Version 2 of the
CDI could indicate an error, but not the particular device which caused the error.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 2-3 September 6th, 2011

2.2 MODIFYING AN EXISTING CDI PROGRAM

This section describes the sections of a Version 2 CDI that would have to be changed to support
Version 3 of the interface definition.

2.2.1 Changes to DataAccessorFactory and CommandAccessorFactory Objects

The IEN Site Server calls the CDI’s DataAccessorFactory object to get an instance of a
DataAccessor object from which to request CDI data. The createDataAccessor method of
the DataAccessorFactory object exposed by a Version 3 CDI should return a reference to an
MCSDataAccessor object.

Similarly, the IEN Site Server calls the CDI’s CommandAccessorFactory object to get an
instance of a CommandAccessor with which to send commands to the CDI. The
createCommandAccessor method of the CommandAccessorFactory object exposed by a
Version 3 CDI should return a reference to a MCSCommandAccessor object.

2.2.2 Changing the DataAccessor Object to Implement MCSDataAccessor

The DataAccessor servant in the CDI must be changed to implement the MCSDataAccessor
interface. MCSDataAccessor replaces three methods in the DataAccessor interface with three
new methods, as shown in Table 2-2 below.

Table 2-2: Methods Replaced in the MCSDataAccessor Interface

DATAACCESSOR
METHOD

MCSDATAACCESSOR
METHOD CHANGES

getDeviceList getAvailableDevices32 Caller passes in list of device types of interest;
CDI returns list with 32-bit device IDs.

deviceDataTypes getDeviceEventTypes Requested event types for devices now
defined by enumerations instead of integers.

getDeviceEventDataList getDeviceUpdate32

List of requested devices and data types
passed to the CDI contains 32-bit device
identifiers and enumerations for requested
data types; CDI returns list of errors matched
to device ID and data type.

2.2.3 Changing the CommandAccessor Object to Implement MCSCommandAccessor
The CommandAccessor servant in the CDI must be changed to implement the MCSCommandAccessor
interface. MCSCommandAccessor adds two new methods and replaces three existing methods of the
DataAccessor interface, as shown in

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 2-4 September 6th, 2011

Table 2-3 below.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 2-5 September 6th, 2011

Table 2-3: Methods Changed in the MCSCommandAccessor Interface

COMMANDACCESSOR
METHOD

MCSCOMMANDACCESSOR
METHOD CHANGES

N/A getAvailableDevices32
New; returns a list of devices for
which the CDI will accept
commands.

setCDIPlan setCDIPlan32
Device list passed to the method
contains 32-bit device identifiers;
method returns results for each
device in the request list.

changeMode changeMode32
Device list passed to the method
contains 32-bit device identifiers;
method returns results for each
device in the request list.

releaseControl releaseControl32
Device list passed to the method
contains 32-bit device identifiers;
method returns results for each
device in the request list.

N/A flash32 New; requests the CDI to put a list
of devices into or out of flash.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-1 September 6th, 2011

3. TCS CDI INTERFACE REQUIREMENTS

The TCS CDI interfaces were designed to enable the IEN Site Server process to communicate
with any traffic control system CDI. This could be a CDI for TransCore’s TransSuite® TCS, a
CDI for a BI Tran QuicNet system, the LA County TCS, or others.

While TCS CDI implementations will vary, all TCS CDI programs must meet the following
requirements:

TCS CDI programs must implement the objects defined in the CORBA interfaces that are
defined in Section 3.1: CORBA Interfaces.

TCS CDI programs must meet performance requirements imposed on them by how the IEN
programs (the Site Server process in particular) use the interfaces. Performance requirements are
covered in Section 3.2: TCS CDI Performance Requirements.

• TCS CDI programs must publish their CommandAccessorFactory and DataAccessorFactory
objects to the CORBA naming service instance running on the Site Server that connects to the
TCS CDI as described in Section 3.3: Usage of the CORBA Naming Service.

• TCS CDI programs must format data to be transmitted to the IEN as described in Section 3.1.7.2:
Device Event Structures.

This section of the document begins by describing the nine (9) IDL files that define the IEN
interface to TCS CDI programs. The section continues with CDI performance requirements,
usage of the CORBA naming service, and considerations for implementing a CDI that must
communicate with the Site Server through a firewall.

3.1 CORBA INTERFACES

The CDI must implement the CORBA interfaces in the IDL files described below. The
interfaces define a contract between the IEN processes that use data from traffic control systems
and TCS CDI programs.

The IDL files containing the interfaces that the TCS CDI must implement are:
• IEN.idl

• IENRTData.idl

• tcs.idl

• IENTCSData.idl

• MCSData.idl

• MCSDataInterface.idl

• tcscommand.idl

• mcscommand.idl

Complete listings of the IDL files are provided in Appendix A: TCS CDI CORBA IDL Files.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-2 September 6th, 2011

3.1.1 IEN.idl

The IEN.idl file contains the IEN module. It defines basic sequences, typedefs, and exceptions
used in structures and interfaces in other modules.

3.1.2 IENRTData.idl

This file defines the IENRTData CORBA module, which contains basic type definitions. The
event data structures in the file are used by CDIs that support Version 2 of the interface. Version
3 CDIs do not use event data structures. The DeviceType enumeration, which defines the kinds
of traffic control system devices used in the IEN, is the only item used from this file:
enum DeviceType

{

 DT_SYSTEM,

 DT_SCHEDULE,

 DT_INTERSECTION,

 DT_SECTION,

 DT_DETECTOR,

 DT_SIGN,

 DT_CAMERA,

 DT_HAR,

 DT_DETECTOR_STATION

};

Traffic control systems need only concern themselves with the following device types:
DT_SYSTEM, DT_INTERSECTION, DT_SECTION, and DT_DETECTOR.

3.1.3 TCS.idl

This file contains the definition of the TCS module. It includes the IENRTData.idl file. The
TCS.idl file is included by both the TCSData.idl and TCSCommand.idl files.

3.1.3.1 Mode Enumeration
/// Modes of operation

 enum Mode

 {

 NORMAL,

 LOCAL_TOD,

 FREE,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-3 September 6th, 2011

 TOD,

 RESPONSIVE,

 MANUAL,

 RELEASE

 };

This enumeration defines the control modes that a CDI is required to accept in a command to
change a section or intersection’s plan selection mode. Table 3-1 below contains an explanation
of the enumeration values.

Table 3-1: Commanded Intersection Control Modes

CONTROL
MODE

EXPLANATION

TOD The central TCS chooses the timing pattern for the controller based on a central time-
of-day schedule.

NORMAL The central TCS chooses the timing pattern for the controller based on the timing
pattern for the section and system that contain the intersection.

RESPONSIVE The central TCS chooses the timing pattern for the intersection controller based on a
traffic responsive algorithm.

FREE The intersection controller should run free, with no programmed central timing pattern.

MANUAL The intersection controller should run a timing pattern selected by a central TCS
operator

LOCAL_TOD The intersection controller selects its timing pattern based on its own time-of-day
schedule.

RELEASE This control mode is deprecated. The IEN Site Server program will use the
releaseControl32 method of the MCSCommandInterface when releasing control of a
device controlled by a CDI running Version 3 of the interface.

Note that the control modes used in commands shown in Table 3-1 above are different from the
control modes that the CDI may report, which are listed in Section 3.1.4.2 below.

3.1.3.2 MCSDevice and Device Structures

The MCSDevice structure defines a device identifier structure that contains a device type field
and a device ID field.
///NEW: 32 bit device identifier instead of 16 bit.

typedef long MCSDeviceID;

///NEW: 32 bit device identifier instead of 16 bit.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-4 September 6th, 2011

///System ID moved into SiteUpdate in MCSDataInterface.idl.

struct MCSDevice

{

 IENRTData::DeviceType type;

 MCSDeviceID id;

};

The Device structure was used as the device identifier structure in previous versions of the CDI,
but is now deprecated because it does not support device IDs greater than 32,767.

3.1.3.3 MCSDeviceList and DeviceList Sequences

The IEN uses the MCSDeviceList sequence when requesting a list of available devices data from
a TCS CDI, and when sending a command to a list of TCS devices.
 ///NEW: 32 bit device identifier instead of 16 bit.

 typedef sequence<MCSDevice> MCSDeviceList

The DeviceList sequence was used to request a list of available devices in previous versions of
the CDI, but is now deprecated because it does not support device IDs greater than 32,767.

3.1.3.4 Version Structure

The version structure contains software version information for a TCS CDI program. The
ConfigurationAccessor interface contains two Version structures, one to identify the version of
the IEN IDL expected by the CDI, and another to identify the version of the CDI software
running on the TCS. The structure defines the major version, minor version, and revision level
for the expected IDL and the version of the command or data accessor.
/// Version number (major.minor.revision)

struct Version

{

short major;

 short minor;

 short revision;

};

3.1.3.5 Status Enumeration

The Status enumeration contains overall status information for a command or data interface to a
traffic control system. The IEN expects that the CDI will report the TCS status as

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-5 September 6th, 2011

SYSTEM_NORMAL during normal operation of the TCS and the CDI. A return of any other
status indicates that some or all TCS CDI features may not operate normally.
enum Status

{

/// Running normally

 SYSTEM_NORMAL,

 /// Initializing; features may be unavailable or uninitialized

 SYSTEM_STARTING,

 /// Shutting down; features may be unavailable or no longer updated

 SYSTEM_STOPPING,

 /// TCS is not running

 SYSTEM_SHUTDOWN,

 /// TCS is unable to run

 SYSTEM_ERROR

};

3.1.3.6 ConfigurationAccessor Interface

This is a base interface for the MCSCommandAccessor interface, which the IEN uses to send
commands to a TCS, and the MCSDataAccessor interface, which the IEN uses to get device data
from a TCS. It defines version information, status information, and exported device information
available for both interfaces.

Instructions for setting the values of these attributes are specified later in the document.
interface ConfigurationAccessor

{

 /// @return Version number for TCS CORBA interface

 readonly attribute Version interfaceVersion;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-6 September 6th, 2011

 /// @return Version of TCS software

 readonly attribute Version systemVersion;

 /// @return Name of TCS system

 readonly attribute string systemName;

 /// @return Current status of TCS

 readonly attribute Status systemStatus;

 /// @return list of configured devices of the given types

 DeviceList getAvailableDevices(in DeviceTypeList types);

};

3.1.4 IENTCSData.idl

The IENTCSData.idl file defines the TCSData module. It depends on the TCS.idl and
IENRtData.idl files. It defines the DataAccessor interface, which is the base of the
MCSDataAccessor interface that the IEN Site Server program will call to get traffic control
system data, and the DataAccessorFactory interface, which the IEN Site Server calls to get an
instance of the MCSDataAccessor. It also defines several enumerated types that are used in the
new MCSDataAccessor interface.

The DataAccessor interface in the IENTCSData.idl file is the interface that the IEN Site
Server uses to get data from a CDI that supports Version 2 of the interface. The IEN Site Server
will use the new MCSDataAccessor interface to get data from a Version 3 CDI. The
MCSDataAccessor interface is derived from the DataAccessor interface. All new CDI
implementations should support the new MCSDataAccessor interface.

3.1.4.1 IEN_EventType Enumeration

The TCS data interface uses the IEN_EventType enumeration for the types of device data
requested by the IEN and returned by the CDI. These event types correspond to different
structures that should be returned by the CDI when the Site Server calls its getDeviceUpdate32
method. The structures themselves are defined in Section 3.1.7.2 below.
 enum IEN_EventType

 {

 IEN_COMMANDRETURN,

 IEN_INTERSECTIONRTSTATUS,

 IEN_INTERSECTIONRTSUMMARY,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-7 September 6th, 2011

 IEN_PHASE_STATEDATA,

 IEN_PEDPHASE_STATEDATA,

 IEN_VEHCALL_STATEDATA,

 IEN_LASTCYCLE_PHASEDATA,

 IEN_DETECTORSTATE,

 IEN_INTERSECTIONINFO,

 IEN_DETECTORINFO,

 IEN_TP_PHASEDATA,

 IEN_SECTIONINFO,

 IEN_SECTIONSTATE

 };

Table 3-2 below shows the data structures defined in Section 3.1.7.2 for each IEN event.

Table 3-2: IEN Event Types and Data Structures

EVENT TYPE DATA STRUCTURE DOCUMENT
SECTION

IEN_COMMANDRETURN Not used N/A

IEN_INTERSECTIONRTSTATUS IntersectionRTStatus 3.1.7.2.3

IEN_INTERSECTIONRTSUMMARY IntersectionRTSummary 3.1.7.2.2

IEN_PHASE_STATEDATA PhaseStateData 3.1.7.2.4

IEN_PEDPHASE_STATEDATA PedestrianPhaseState 3.1.7.2.5

IEN_VEHCALL_STATEDATA VehicleCallState 3.1.7.2.6

IEN_LASTCYCLE_PHASEDATA LastCyclePhaseData 3.1.7.2.8

IEN_DETECTORSTATE DetectorState 3.1.7.2.11

IEN_INTERSECTIONINFO IntersectionInfo 3.1.7.2.1

IEN_DETECTORINFO DetectorInfo 3.1.7.2.10

IEN_TP_PHASEDATA TpPhaseData 3.1.7.2.9

IEN_SECTIONINFO SectionInfo 3.1.7.2.12

IEN_SECTIONSTATE SectionState 3.1.7.2.13

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-8 September 6th, 2011

3.1.4.2 SignalControlMode Enumeration

The SignalControlMode enumeration describes the control modes that may be reported for
intersection controllers. Control modes are used in the IEN to indicate the mode of plan
selection used by the controller.
 enum SignalControlMode

 {

 ISC_OTHER_NO_ADDITIONAL, // A mode other than those here

 ISC_OTHER_ADDITIONAL, // Deprecated

 ISC_FREE, // free

 ISC_FIXED_TIME, // Fixed length phases

 ISC_TIME_BASE_COORDINATION, // Coordinated clock-based plan

 ISC_ACTUATED, // Fully actuated ctrl (like free)

 ISC_SEMI_ACTUATED, // Semi-actuated (redundant with

 // time based coordination,

 // deprecated)

 ISC_CRITICAL_INTERSECTION_CONTROL, // Split adjustment based on traffic

 // traffic at a critical intersection

 ISC_TRAFFIC_RESPONSIVE, // Traffic responsive plan selection

 ISC_ADAPTIVE, // Using an adaptive algorithm

 ISC_TRANSITION, // Transition between plans

 ISC_EXTERNAL, // Plan from external system

 ISC_ATCS, // Special LADOT adaptive mode

 ISC_UNKNOWN

 };

3.1.4.3 IntersectionSignalState Enumeration

The IntersectionSignalState enumeration denotes the intersection’s operational state.
 enum IntersectionSignalState

 {

 ISS_OTHER_NO_ADDITIONAL, // Obsolete, do not use

 ISS_OTHER_ADDITIONAL, // Obsolete, do not use

 NORMAL_OPERATION, // Intersection operating normally

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-9 September 6th, 2011

 FLASH, // Intersection is flashing

 PREEMPTION, // Preemption input active

 CONFLICT_FLASH, // Flashing due to conflict monitor

 FAILED, // Central system has failed the

 // controller

 ISS_UNKNOWN // State unknown

 };

3.1.4.4 ControllerResponseState Enumeration

The ControllerResponseState indicates whether or not the controller responded to the most
recent communication attempts. The RESPONDING, NOT_RESPONDING, and UNKNOWN values
should be used for most intersection response states.
 enum ControllerResponseState

 {

 RESPONDING_OTHER_NO_ADDITIONAL, // Obsolete, do not use

 RESPONDING_OTHER_ADDITIONAL, // Obsolete, do not use

 RESPONDING, // Responded to last comm attempt

 NOT_RESPONDING, // No response to last comm attempt

 UNKNOWN // Response state unknown

 };

3.1.4.5 PreemptType Enumeration

The PreemptType enumeration enables the CDI to report the reason why an intersection is
operating under preemption.
 enum PreemptType

 {

 PREEMPT_OTHER_NO_ADDITIONAL, // Preempt of type other than those

 // in this enumeration

 PREEMPT_OTHER_ADDITIONAL, // Obsolete, do not use

 NO_PREEMPT, // No preemption in effect

 GENERAL_PREEMPT, // General preemption

 BRIDGE_PREEMPT, // Preemption by bridge

 EV_PREEMPT, // Preemption for emergency vehicle

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-10 September 6th, 2011

 LRT_PREEMPT, // Preempt for light rail train

 RR_PREEMPT, // Railroad preempt

 PREEMPT_UNKNOWN // Preempt of unknown type

 };

3.1.4.6 CommState Enumeration

This enumeration enables a CDI to report whether or not the TCS can communicate with a
controller well enough to determine the controller’s state. The enumeration describes the central
system’s assessment of communication to the controller. The obsolete “OTHER” enumeration
values duplicate the more descriptive COMM_UNKNOWN enumeration value.
 enum CommState

 {

 COMM_OTHER_NO_ADDITIONAL, // Obsolete, do not use

 COMM_OTHER_ADDITIONAL, // Obsolete, do not use

 COMM_GOOD, // Comm from central to ctrlr good

 // enough for central

 COMM_BAD, // Comm from central to ctrlr too

 // bad to use reliably

 COMM_UNKNOWN // Central can't determine comm

 // state to ctrlr, due to comm eqpmt

 // failure or ctrlr offline

 };

3.1.4.7 Controller Alarm Bitmasks

The following constants define alarm bits that may be reported for IEN controllers in the alarms
member of the IntersectionRTSummary structure, as described in Section 3.1.7.2.2.
 const short NO_ALARM = 0x00;

 const short CONFLICT_FLASH_ALARM = 0x01;

 const short CABINET_DOOR_OPEN_ALARM = 0x02;

 const short TRANSITION_ALARM = 0x04;

 const short INTERNAL_ERROR_ALARM = 0x08;

 const short FLASH_ALARM = 0x10;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-11 September 6th, 2011

3.1.4.8 DetectorStatus Enumeration

The DetectorStatus enumeration describes the values that may be returned to describe the status
of a detector to the IEN. This enumeration is used for the status member of the DetectorState
structure, defined in Section 3.1.7.2.11.
 enum DetectorStatus

 {

 /// Other state; no additional details available

 DETECTOR_OTHER_NO_ADDITIONAL,

 /// Other state; additional details available through

 /// device-specific interface

 DETECTOR_OTHER_ADDITIONAL,

 /// Enabled but not working due to hardware or comm failure

 DETECTOR_FAILED,

 /// working

 DETECTOR_OPERATIONAL,

 /// intentionally disabled

 DETECTOR_OFF,

 /// Detector state unknown due to communication problems, system

 /// configuration, or other central system problems.

 DETECTOR_UNKNOWN

 };

3.1.4.9 DetectorClass Enumeration

The DetectorClass enumeration describes how a detector is used by the traffic control system.
Most detectors of interest to the IEN will be system detectors (DC_SYSTEM). The
DetectorClass enumeration is used for the detectorClass member of the DetectorInfo structure
defined in Section 3.1.7.2.10.
 /// Usage of the detector in the traffic system.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-12 September 6th, 2011

 enum DetectorClass

 {

 DC_OTHER_NO_ADDITIONAL,

 DC_OTHER_ADDITIONAL,

 DC_STOP_BAR,

 DC_SYSTEM,

 DC_PEDESTRIAN,

 DC_ADAPTIVE,

 DC_CALL,

 DC_EXTENSION,

 DC_MAINLINE,

 DC_REVERSIBLE_LANE,

 DC_RAMP_DEMAND,

 DC_RAMP_MERGE,

 DC_RAMP_PASSAGE,

 DC_RAMP_QUEUE,

 DC_UNKNOWN

 };

3.1.4.10 DetectorType Enumeration

The DetectorType enumeration describes the implementation technology for detectors connected
to traffic control systems. It is used in the detectorType member of the DetectorInfo structure
defined in Section 3.1.7.2.10.
 enum DetectorType

 {

 DT_OTHER_NO_ADDITIONAL,

 DT_OTHER_ADDITIONAL,

 DT_INDUCTIVE_LOOP,

 DT_MAGNETIC,

 DT_MAGNETOMETERS,

 DT_PRESSURE_CELLS,

 DT_MICROWAVE_RADAR,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-13 September 6th, 2011

 DT_ULTRASONIC,

 DT_VIDEO_IMAGE,

 DT_LASER,

 DT_INFRARED,

 DT_ROAD_TUBE,

 DT_UNKNOWN

 };

3.1.4.11 Direction Enumeration

The Direction enumeration describes the direction of traffic flow on a roadway or past a detector.
It is used in the mainStreetDirection field in the IntersectionInfo structure defined in Section
3.1.7.2.1and the detectorDirection field in the DetectorInfo structure defined in Section
3.1.7.2.10.
 enum Direction {

 EastBound,

 WestBound,

 SouthBound,

 NorthBound,

 SouthEastBound,

 SouthWestBound,

 NorthEastBound,

 NorthWestBound,

 InBound,

 OutBound,

 None,

 East_West, // Bi-directional east & west

 North_South, // Bi-directional north & sourth

 NE_SW, // Bi-directional northest and southwest

 NW_SE, // Bi-directional northwest and southeast

 InBound_and_Outbound, // Bi-directional in and outbound

 Other // When none of the above will do . . .

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-14 September 6th, 2011

3.1.5 TCSData.idl

The TCSData module contains version constants used in Version 2 CDIs, several struct and
typedef definitions that are used by Version 2 CDIs, and definitions of the DataAccessor and
DataAccessorFactory interfaces.

3.1.5.1 IEN CDI Version 2 Interface Version Constants

The first items in the TCSData module are the interface constants that version 2 CDIs return to
identify themselves. The IEN Site Server program treats any CDI that returns its
interfaceVersion property with its majorVersion field set to 2 as Version 2 CDIs.

3.1.5.2 DataAccessor Interface

The DataAccessor interface of the CDI is used by the Site Servers to get data from Version 2
CDIs. The new MCSDataAccessor interface (shown in Section 3.1.7.6) used in Version 3 CDIs
is derived from DataAccessor. It contains replacement methods for getDeviceList,
deviceDataTypes, and getDeviceEventDataList that support 32-bit device identifiers.
However, a Version 3 CDI must still support the clientName attribute and destroy method
defined in the DataAccessor interface.
 /// Interface for retrieving data from TCS

 interface DataAccessor: TCS::ConfigurationAccessor

 {

 /// Instance name passed to DataAccessorFactory's

 /// CreateDataAccessor() method to create this instance.

 readonly attribute string clientName;

 /// Client calls this method when finished with this

 /// DataAccessor. Releases all resources associated with this

 /// instance.

 void destroy();

 /// @return the configured device list for this instance.

 TCS::DeviceList getDeviceList();

 /// Get the data type codes supported for all device types

 /// for which this CDI returns data.

 /// @return supported data types for all supported devices

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-15 September 6th, 2011

 DeviceDataTypeList deviceDataTypes ();

 /// @return Data items for input device list.

 ///

 /// @param devices List of devices for which to get data. Each

 /// entry in the list has a device ID, requested

 /// data types, and a changeOnly flag indicating

 /// if the method should retrieve only changed

 /// data (if true), or all known data (if false).

 /// @return Sequence of IEN events containing requested

 /// requested data

 /// @throws SystemStatusException if system not currently

 /// running

 /// @throws Error if a device ID or data type in the

 /// device list is not supported.

 IENRTData::EventSeq getDeviceEventDataList(

 in DeviceCodeList devices)

 raises (TCS::SystemStatusException,

 TCS::Error);

 };

3.1.5.2.1 clientName Attribute

This attribute returns the instance name passed to the call to the DataAccessorFactory object’s
createAccessor method that created the DataAccessor object.

3.1.5.2.2 destroy Method

The destroy method releases the resources owned by a given instance of the DataAccessor
object. The IEN calls it when it is finished using the DataAccessor object.

3.1.5.2.3 getDeviceList Method

(Note: the getDeviceList method has been superseded in the MCSDataInterface defined for
the MCS project. CDIs that support MCSDataInterface may return an empty list from this
method.)

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-16 September 6th, 2011

The getDeviceList method returns the list of devices supported by the TCS CDI, including their
identifiers and types. The deviceDataTypes method returns the data type codes returned by the
CDI program for all supported device types. The clientName attribute returns the client name set
for the DataAccessor when it was created by a DataAccessorFactory object, as discussed in
Section 3.1.5.3: DataAccessorFactory Interface below.

3.1.5.2.4 deviceDataTypes Method

(Note: the deviceDataTypes method has been superseded in the MCSDataInterface defined for
the MCS project. Version 3 CDIs should return an empty list from this method.) This method
returns a list of device types supported by the CDI and the data types that the IEN Site Server
may request for each supported device type.

3.1.5.2.5 getDeviceEventDataList Method

The getDeviceEventDataList method has been superseded in the MCSDataInterface
defined for the MCS project. CDIs that support MCSDataInterface may return an empty list
from this method.)

The data retrieval method, getDeviceEventDataList, retrieves data for the requested list of
devices. If a device’s changesOnly parameter is true, the CDI should return only the requested
data for the device that has changed since the CDI last checked it. If a device’s changesOnly
parameter is false, the CDI should return all requested data for the device.

3.1.5.3 DataAccessorFactory Interface

The IEN Site Server calls this interface when it wishes to begin getting intersection data from a
traffic control system. Version 3 CDIs should return an object of type MCSDataAccessor
downcast to DataAccessor from this method. The IEN Site Server will determine whether or not
a DataAccessor can be cast to MCSDataAccessor by the version information it returns. If the
major version number is 3 or higher, then the Site Server will cast the DataAccessor to an
instance of MCSDataAccessor.
 /// Interface for creating instances of DataAccessor

 interface DataAccessorFactory

 {

 /// Create an instance of DataAccessor.

 ///

 /// @param clientName Text identifying the user

 /// of this interface. For

 /// informational and diagnostic

 /// purposes only.

 ///

 /// @param option Provides access to special

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-17 September 6th, 2011

 /// functionality (generally for

 /// debugging or testing purposes).

 /// Always pass 0 unless you know

 /// what you're doing.

 /// @throws Error If the client name is empty or the

 /// option is not supported

 DataAccessor createDataAccessor(in string clientName,

 in long option)

 raises (TCS::Error);

 };

3.1.6 MCSData.idl

The MCSDATA module is defined in the MCSData.idl file. It defines sequences and
structures for representing devices with 32-bit identifiers.

3.1.6.1 MCSDeviceID typedef

This typedef represents a 32-bit device ID.
 typedef long MCSDeviceID;

3.1.6.2 MCSDeviceIDList Sequence

This sequence contains a list of 32-bit device identifiers.
 typedef sequence<MCSDeviceID> MCSDeviceIDList;

3.1.6.3 MCSDevice Structure

This structure contains a device type field and a 32-bit device identifier.
 struct MCSDevice

 {

 IENRTData::DeviceType type;

 MCSDeviceID id;

 };

3.1.6.4 MCSDeviceList Sequence

This sequence contains a list of MCSDevice structures.
 typedef sequence<MCSDevice> MCSDeviceList;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-18 September 6th, 2011

3.1.6.5 EventTypeList Sequence

This sequence contains a list of IEN_EventType structures for specifying data types to request
from a CDI.
 typedef sequence<IENTCSData::IEN_EventType> EventTypeList;

3.1.7 MCSDataInter face.idl

The MCSDataInterface.idl file contains the MCSDataInterface module. The module
contains definitions of all MCS device event types as structures and the MCSDataAccessor
interface. MCSDataAccessor is derived from the DataAccessor interface, which contains the full
set of methods for old CDI programs. It adds methods that return device data with 32-bit device
identifiers. New CDI implementations should support all methods from the
ConfigurationAccessor interface, all methods from the DataAccessor interface except for
getDeviceList and getDeviceEventDataList, and all methods from the
MCSDataAccessor interface.

3.1.7.1 CDI Version 3 Interface Version Number Constants

The constants defined in the beginning of the MCSDataInterface module are the major version
number, minor version number, and revision number for the currently defined IEN command
data interfaces. IEN Site Server programs require that a CDI’s interfaceVersion attribute returns
a major version number of 3 if it supports the MCSDataInterface. The minorVersion and
revision fields may be significant in later revisions of the IEN CDI definition.
 const short majorVersion = 3;

 const short minorVersion = 0;

 const short revision = 0;

3.1.7.2 Device Event Structures

MCS device events are defined as IDL structures. They define all events that are returned from
the CDI to the Site Server. In Version 2 of the CDI interface, the CDI built events from a
generic structure, with variable-length sequences. In Version 3, the CDI should instead use the
structures defined in the MCSDataInterface.idl file.

The structures defined in this section define the various types of events that the IEN Site Server
may request from the CDI for intersection, section, and detector data, and that the Site Server
may send to the CDI to request changes in intersection and section operation. Each event
structure corresponds to one of the values from the IEN_EventType enumeration in the
IENTCSData.idl file.

The events defined in this section are all components of the SiteUpdate structure, which the site
server requests from the CDI in the getDeviceUpdate32 method of the MCSDataAccessor
interface.

3.1.7.2.1 IntersectionInfo Structure

This structure contains configuration information for an intersection controller. The TCS CDI
should return an IntersectionInfo structure to the IEN Site Server requests one for a valid

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-19 September 6th, 2011

intersection. It is denoted by the IEN_INTERSECTIONINFO enumeration value in the
IEN_EventType enumeration. It replaces the IEN_INTERSECTIONINFO event defined in
Version 2 of the interface.
 struct IntersectionInfo

 {

 ///ID of the controller.

 MCSDATA::MCSDeviceID id;

 ///The EntityID of the section to which this intersection belongs. -1 if

 /// it is not a member of a section.

 long sectionID;

 ///Seconds between poll attempts to the intersection controller.

 short secondsBetweenPollAttempts;

 ///The name of the cross street of the intersection.

 string crossStreet;

 ///The name of the main street of the intersection.

 string mainStreet;

 ///The direction of traffic flow on the main street.

 IENTCSData::Direction mainStreetDirection;

 ///Latitude of the controller in micro degrees. Positive if north of

 ///equator, negative if sourth.

 long latitude;

 ///Longitude of the controller in micro degrees. Positive if east of

 ///prime meridian, negative if west.

 long longitude;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-20 September 6th, 2011

 ///Name describing the type of controller.

 string controllerType;

 ///Brief description of where this controller is. Usually a main street

 ///@ cross street specification.

 string description;

 };

The controllerType member of the structure should be a human-understandable name of the
controller and firmware in the controller. Some example controller type strings are listed in
Table 3-3 below.

Table 3-3: Example Controller Type Strings

EXAMPLE CONTROLLER
TYPE STRINGS

BI Tran 207LRT

BI Tran 222WP

BI Tran CIC

Series 2000 RCU

Series 2000 RCU LRT

Traconex TMP-390

Traconex TMP-390CJ

Traconex TMP-390M

Wapiti W4HC11

Wapiti W4IKS

Wapiti W4LRT

Wapiti W4LRT+

Wapiti W9FT

LACO-4E

The accompanying IntersectionInfoSeq sequence defines a list of IntersectionInfo structures.
 typedef sequence<IntersectionInfo> IntersectionInfoSeq;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-21 September 6th, 2011

3.1.7.2.2 IntersectionRTSummary Structure

This structure contains slowly changing state information for an intersection controller. It is
denoted by the IEN_INTERSECTIONRTSUMMARY enumeration value in the IEN_EventType
enumeration. It replaces the IEN_ INTERSECTIONRTSUMMARY event defined in Version 2
of the interface.
 struct IntersectionRTSummary

 {

 ///Id of the controller.

 MCSDATA::MCSDeviceID id;

 ///Timing plan selection mode in use by the controller.

 IENTCSData::SignalControlMode controlMode;

 ///Operational state of the controller.

 IENTCSData::IntersectionSignalState signalState;

 ///Controller response state, RESPONDING if controller responded to last

 ///communication attempt, NOT_RESPONDING if not, UNKNOWN if system

 ///problem prevents communication.

 IENTCSData::ControllerResponseState responseState;

 ///If preemption in effect, cause for preemption. NO_PREEMPT if

 ///preemption not in effect.

 IENTCSData::PreemptType preemptType;

 ///A bitmask representing one or more active alarms for the controller.

 long alarms;

 ///True if main street green is active, false if inactive or unknown.

 boolean isMainStreetGreen;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-22 September 6th, 2011

 ///Overall state of communication from central to the controller,

 ///COMM_GOOD if comm mostly functioning as desired, COMM_BAD if quality

 ///of comm is too low for use by central, UNKNOWN if central problem

 ///prevents communication.

 IENTCSData::CommState commState;

 ///Numeric id of the timing plan.

 long timingPlanID;

 ///Desired cycle length in seconds.

 long desiredCycleLength;

 ///Desired offset in seconds.

 long desiredOffset;

 ///Observed offset in seconds, -1 if unknown.

 long actualOffset;

 };

The IntersectionRTSummarySeq sequence defines a list of IntersectionRTSummary structures.
 typedef sequence<IntersectionRTSummary> IntersectionRTSummarySeq;

3.1.7.2.3 IntersectionRTStatus Structure

This structure contains rapidly changing state information for an intersection controller. It is denoted by
the IEN_INTERSECTIONRTSTATUS enumeration value in the IEN_EventType enumeration. It
replaces the IEN_ INTERSECTIONRTSTATUS event defined in Version 2 of the interface.
 struct IntersectionRTStatus

 {

 //ID of the controller.

 MCSDATA::MCSDeviceID id;

 //Seconds since the start of current cycle.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-23 September 6th, 2011

 short cycleCounter;

 //Cycle counter for controller with the same cycle length but offset 0

 short referenceCycleCounter;

 };

The accompanying IntersectionRTStatusSeq sequence defines a list of IntersectionRTStatus structures.

 typedef sequence<IntersectionRTStatus> IntersectionRTStatusSeq;

3.1.7.2.4 PhaseStateData Structure

This structure contains the numeric identifiers of phases that are currently active in an intersection
controller. It is denoted by the IEN_PHASE_STATEDATA enumeration value in the IEN_EventType
enumeration. It replaces the IEN_PHASE_STATEDATA event defined in Version 2 of the interface.
 struct PhaseStateData

 {

 //ID of the controller.

 MCSDATA::MCSDeviceID id;

 //Numeric IDs of phases that are currently green. The sequence length

 //should be equal to the number of phases that are currently active. If

 //there are none then this sequence should contain one element with a

 //value of zero.

 IEN::ShortSeq activeGreens;

 };

The accompanying PhaseStateDataSeq sequence defines a list of PhaseStateData structures.
 typedef sequence<PhaseStateData> PhaseStateDataSeq;

3.1.7.2.5 PedestrianPhaseState Structure

This structure contains the numeric identifiers of phases that are currently displaying walk signals in an
intersection controller. It is denoted by the IEN_PEDPHASE_STATEDATA enumeration value in the
IEN_EventType enumeration. It replaces the IEN_PEDPHASE_STATEDATA event defined in Version
2 of the interface.
 struct PedestrianPhaseState

 {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-24 September 6th, 2011

 //Id of the controller

 MCSDATA::MCSDeviceID id;

 //Numeric IDs of phases that are currently displaying a walk signal.

 //The sequence length should be equal to the number of phases in walk.

 //If there are none then this sequence should contain one element with a

 //value of zero.

 IEN::ShortSeq activePeds;

 };

The accompanying PedestrianPhaseStateSeq sequence defines a list of PedestrianPhaseState structures.
 typedef sequence<PedestrianPhaseState> PedestrianPhaseStateSeq;

3.1.7.2.6 VehicleCallState Structure

This structure contains the numeric identifiers of all phases that have vehicle calls active in an intersection
controller. It is denoted by the IEN_VEHCALL_STATEDATA enumeration value in the IEN_EventType
enumeration. It replaces the IEN_VEHCALL_STATEDATA event defined in Version 2 of the interface.
 struct VehicleCallState

 {

 //ID of the controller.

 MCSDATA::MCSDeviceID id;

 //Numeric IDs of phases with active vehicle calls. The length of the

 //sequence should be the number of phases that have active vehicle

 //calls. If there are none then the length should be one with a single

 //phase value of zero.

 IEN::ByteSeq phasesWithCalls;

 };

The accompanying VechicleCallStateSeq sequence defines a list of VehicleCallState structures.

 typedef sequence<VehicleCallState> VehicleCallStateSeq;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-25 September 6th, 2011

3.1.7.2.7 PhaseTime Structure

The PhaseTime structure is used to report green times in seconds for a controller, both planned and
observed. The accompanying PhaseTimeSeq sequence defines a list of PhaseTime structures, and is used
in both the LastCyclePhaseData and TpPhaseData structures. This structure was added for Version 3 of
the CDI definition.
 struct PhaseTime

 {

 //Numeric identifier for a phase.

 short phaseId;

 //Number of seconds that the phase was or should be active.

 short phaseTime;

 };

 typedef sequence<PhaseTime> PhaseTimeSeq;

3.1.7.2.8 LastCyclePhaseData Structure

This structure contains the numeric identifiers and green time in seconds of all phases that were active in
the controller’s most recently completed cycle. It is denoted by the IEN_LASTCYCLE_PHASEDATA
enumeration value in the IEN_EventType enumeration. It replaces the
IEN_LASTCYCLE_PHASEDATA event defined in Version 2 of the interface.

Note that IEN user interface programs require that the CDI always return the same number of elements in
the greenTimes sequence, regardless of how many phases were active in the controller’s last cycle. As a
guide, the CDI should return times for the maximum number of phases that the controller supports. The
CDI should return a phase time of 0 for inactive phases.
 struct LastCyclePhaseData

 {

 //ID of the controller.

 MCSDATA::MCSDeviceID id;

 //The total time of all the active phases;

 long totalPhaseTime;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-26 September 6th, 2011

 //Green times for phases that were active in the controller's last

 //completed cycle. The length of the sequence should be the number of

 //phases that were active in the last cycle. Each element contains the

 //ID of an active phase and the total time in seconds that the phase was

 //active in the last completed cycle. If the totalPhaseTime field is

 // zero then the length of this sequence should be zero as well.

 PhaseTimeSeq greenTimes;

 };

The accompanying LastCyclePhaseDataSeq sequence defines a list of LastCyclePhaseData structures.
 typedef sequence<LastCyclePhaseData> LastCyclePhaseDataSeq;

3.1.7.2.9 TpPhaseData Structure

This structure contains phase IDs and planned phase times in seconds for a controller’s current timing
plan. It is denoted by the IEN_TP_PHASEDATA enumeration value in the IEN_EventType enumeration.
It replaces the IEN_TP_PHASEDATA event defined in Version 2 of the interface.
 struct TpPhaseData

 {

 //Id of the controller.

 MCSDATA::MCSDeviceID id;

 //Planned phase times in seconds for the current timing plan in the

 //controller. The length of the sequence should be the number of phases

 //active in the timing plan. Each element in the sequence should

 //contain the phase ID and the planned phase time in seconds. The

 //sequence length may be zero if the controller is currently running

 //free or is in flash.

 PhaseTimeSeq plannedPhaseTimes;

 };

The accompanying TpPhaseDataSeq sequence defines a list of TpPhaseData structures.
 typedef sequence<TpPhaseData> TpPhaseDataSeq;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-27 September 6th, 2011

3.1.7.2.10 DetectorInfo Structure

This structure contains configuration information for a system detector. It is denoted by the
IEN_DETECTORINFO enumeration value in the IEN_EventType enumeration. It replaces the
IEN_DETECTORINFO event defined in Version 2 of the interface.
 struct DetectorInfo

 {

 ///Id of the detector.

 MCSDATA::MCSDeviceID id;

 ///Averaging period in seconds used to create averaged detector data. If

 ///averaged data is not available, should be -1.

 long averagingPeriod;

 ///Usage of the detector in the traffic system.

 IENTCSData::DetectorClass detectorClass;

 /// Vehicle detection technique used by the detector.

 IENTCSData::DetectorType detectorType;

 /// Direction of traffic flow past the detector.

 IENTCSData::Direction detectorDirection;

 //Lane number for traffic passing the detector. The innermost lane

 //on the roadway is lane 1, the next lane to the right is lane 2, etc.

 octet laneNumber;

 //Name of the roadway that contains the detector.

 string roadName;

 //Weighting factor(k) for volume+weighted occupancy calculations.

 float weightingFactor;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-28 September 6th, 2011

 };

The accompanying DetectorInfoSeq defines a list of DetectorInfo structures.
 typedef sequence<DetectorInfo> DetectorInfoSeq;

3.1.7.2.11 DetectorState Structure

This structure contains the latest state information known by the TCS for a system detector, along with
the time at which the detector information was gathered from the field device (as opposed to the time at
which the IEN Site Server requested the data from the CDI or the CDI collected the data from the TCS).
It is denoted by the IEN_DETECTORSTATE enumeration value in the IEN_EventType enumeration. It
replaces the IEN_DETECTORSTATE event defined in Version 2 of the interface.
 struct DetectorState

 {

 ///Id of the detector.

 MCSDATA::MCSDeviceID id;

 ///The time of the updload in HHMMSS format: hours (0-23 for midnight to

 ///11 p.m.) * 10,000 | minutes (0-59) * 100 | seconds (0-59)

 IEN::HHMMSS lastUpdateTime;

 ///The date of the update in YYYYMMDD format: year (AD) * 10,0000 |

 ///month (1-12) | day of month (1-31).

 IEN::YYYYMMDD lastUpdateDate;

 ///Volume reported by the detector in vehicles per hour.

 long volume;

 /// Average volume (-1 if not available).

 long avgVolume;

 ///Volume in veh. per hour + weighted occupancy (-1 if not available).

 long volumePlusWeightingFactor;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-29 September 6th, 2011

 ///Avg volume + weighted occupancy. (-1 if not available).

 long avgVolumePlusWeightingFactor;

 ///Latest known status of the detector. If the field is a value other

 ///than DETECTOR_OPERATIONAL then the volume, occupancy, and speed

 ///fields should be set to -1.

 IENTCSData::DetectorStatus status;

 ///Speed in miles per hour. -1 if not available.

 short speed;

 ///Average speed over averaging period. -1 if not available.

 short avgSpeed;

 ///Occupancy percentage.

 short occupancy;

 ///Average occupancy. -1 if not available.

 short avgOccupancy;

 };

The accompanying DetectorStateSeq sequence defines a list of DetectorState structures.
 typedef sequence<DetectorState> DetectorStateSeq;

3.1.7.2.12 SectionInfo Structure

This structure contains configuration information for a section. It is denoted by the IEN_SECTIONINFO
enumeration value in the IEN_EventType enumeration. It replaces the IEN_SECTIONINFO event
defined in Version 2 of the interface.
 struct SectionInfo

 {

 //ID of section.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-30 September 6th, 2011

 MCSDATA::MCSDeviceID id;

 //The IDs of controllers that belong to this section.

 IEN::LongSeq intersections;

 };

The accompanying SectionInfoSeq sequence defines a list of SectionInfo structures.
 typedef sequence<SectionInfo> SectionInfoSeq;

3.1.7.2.13 SectionState Structure

This structure contains state information for a section. It is denoted by the IEN_SECTIONSTATE
enumeration value in the IEN_EventType enumeration. It replaces the IEN_SECTIONSTATE event
defined in Version 2 of the interface.
 struct SectionState

 {

 //Id of the Section.

 MCSDATA::MCSDeviceID id;

 ///Control mode used to select the timing plans of controllers following

 ///the section.

 IENTCSData::SignalControlMode sectionControlMode;

 //Timing plan of the controllers that follow this Section.

 short planID;

 };

The SectionStateSeq sequence defines a list of SectionState structures.
 typedef sequence<SectionState> SectionStateSeq;

3.1.7.2.14 DetectorStationInfo and DetectorStationState Structures
The DetectorStationInfo structure, the DetectorStationInfoSeq typedef, the DetectorStationState structure,
and the DetectorStationStateSeq typedef will be used for distribution of freeway data in a later version of

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-31 September 6th, 2011

the IEN. The CDI should never receive requests for these data types from the Site Server, and should not
return data of these types to the Site Server.

3.1.7.3 SiteUpdate Component Structures

The structures defined in this section are components of the SiteUpdate structure.

3.1.7.3.1 DeviceConfigGroup Structure

This component of the SiteUpdate structure contains configuration information for intersections,
detectors, and sections, and an update time specified in hours, minutes, and seconds.
 struct DeviceConfigGroup

 {

 /// Time update was created by the CDI.

 IEN::HHMMSS timeOfDistribution;

 /// Configuration information for intersections.

 IntersectionInfoSeq intersections;

 /// Configuration information for detectors.

 DetectorInfoSeq detectors;

 /// Configuration information for sections.

 SectionInfoSeq sections;

 /// Configuration information for detector stations

 DetectorStationInfoSeq stations;

 };

The accompanying DeviceConfigBatch sequence, which is a sequence of DeviceConfigGroup structures,
is one of the components of the SiteUpdate structure that the CDI should return from a call to its
getDeviceUpdate32 method.
 typedef sequence<DeviceConfigGroup> DeviceConfigBatch;

3.1.7.3.2 DeviceStateGroup Structure

This structure contains slowly changing device state information for intersections, detectors, and sections,
and an update time specified in hours, minutes, and seconds.
 struct DeviceStateGroup

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-32 September 6th, 2011

 {

 /// Time update was created by the CDI.

 IEN::HHMMSS timeOfDistribution;

 /// Intersection summary information (suitable for map).

 IntersectionRTSummarySeq intersectionStates;

 /// Detector state information (last set of uploaded data).

 DetectorStateSeq detectorStates;

 /// Section state information (control mode and timing plan in use).

 SectionStateSeq sectionStates;

 /// Freeway Detector Station states

 DetectorStationStateSeq stationStates;

 };

The accompanying DeviceStateBatch sequence contains a sequence of DeviceStateGroup structures. It is
one of the components of the SiteUpdate structure that the CDI should return from a call to its
getDeviceUpdate32 method.
 typedef sequence<DeviceConfigGroup> DeviceConfigBatch;

3.1.7.3.3 RealTimeUpdateGroup Structure

This structure contains rapidly changing intersection state information and an update time specified in
hours, minutes, and seconds. The IEN Site Server requests the data types in this structure only if an IEN
user interface program has subscribed to them and the Site Server has not exceeded the maximum
configured number of subscriptions for the CDI.
 struct RealTimeUpdateGroup

 {

 /// Time update was created by the CDI.

 IEN::HHMMSS timeOfDistribution;

 /// Intersection cycle counters and master cycle counters.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-33 September 6th, 2011

 IntersectionRTStatusSeq intersectionRTStatuses;

 /// Active green phases for intersections.

 PhaseStateDataSeq intersectionPhaseStates;

 /// Active pedestrian walk signals for intersections.

 PedestrianPhaseStateSeq pedestrianPhaseStates;

 /// Active vehicle calls for intersections.

 VehicleCallStateSeq vehicleCallStates;

 /// Phase times from completed cycles for intersections.

 LastCyclePhaseDataSeq lastCycles;

 /// Planned phase times for intersections.

 TpPhaseDataSeq maximumPhaseTimes;

 };

The accompanying RealTimeUpdateBatch sequence contains a sequence of RealTimeUpdateGroup
structures. It is one of the components of the SiteUpdate structure that the CDI should return from a call
to its getDeviceUpdate32 method.

3.1.7.4 SiteUpdate Structure

The SiteUpdate structure is the structure in which the CDI should return requested device data when the
IEN Site Server calls the getDeviceUpdate32 method of the CDI’s MCSDataAccessor interface. The CDI
is responsible for setting the size and filling in the configUpdates, stateUpdates, and realTimeUpdates
sequences in the SiteUpdate structure. It is not responsible for filling in the site, system, or size_of_data
fields in the structure.
 struct SiteUpdate

 {

 /// Display ID of site of origin for the update. Filled in by the

 /// site server, not the CDI.

 short site;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-34 September 6th, 2011

 /// Display ID of system of origin for the update. Filled in by the

 /// site server, not the CDI.

 short system;

 /// Size of the data contained in the update in bytes. Filled in by the

 /// site server after getting the update from the CDI.

 long size_of_data;

 /// Requested configuration information for devices on the TCS.

 DeviceConfigGroup configUpdates;

 /// Requested device state information for the TCS.

 DeviceStateGroup stateUpdates;

 /// Requested intersection real-time state information for the TCS.

 RealTimeUpdateGroup realTimeUpdates;

 };

3.1.7.5 Structures and Sequences Used in MCSDataAccessor Methods

This section defines other structures and sequences used in MCSDataAccessor methods.

3.1.7.5.1 MCSDeviceDataTypes Structure

The MCSDeviceDataType structure defines the set of event types that a CDI supports for a given
device type.
 struct MCSDeviceDataTypes

 {

 /// Type of device that the CDI supports

 IENRTData::DeviceType type;

 /// Types of events that a site server may request for the device type.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-35 September 6th, 2011

 MCSDATA::EventTypeList eventTypes;

 };

3.1.7.5.2 MCSDeviceDataTypeList Sequence

The MCSDeviceDataTypeList sequence, a sequence of MCSDeviceDataType structures, is returned by the
CDI’s getDeviceEventTypes method. The Site Server calls this entry point to request the set of device
and event types supported by the CDI.
 typedef sequence<MCSDeviceDataTypes> MCSDeviceDataTypeList;

3.1.7.5.3 MCSDeviceRequest Structure

The MCSDeviceRequest structure defines a request for one or more types of data for a single device.
 struct MCSDeviceRequest

 {

 /// Device type and 32 bit device ID.

 MCSDATA::MCSDevice device;

 /// List of event types to request for the device.

 MCSDATA::EventTypeList eventTypes;

 /// True if requesting changes since the last time the device's data

 /// was requested, false if the CDI should return all data for the

 /// device regardless of what data was last reported by the CDI.

 boolean changedOnly;

 };

3.1.7.5.4 MCSDeviceRequestList Sequence

The MCSDeviceRequestList sequence contains one or more MCSDeviceRequest structures. The IEN Site
Server passes an instance of this sequence to each call of the CDI’s getDeviceEventData32 method to
indicate the devices and data types currently of interest to the IEN.
 typedef sequence<MCSDeviceRequest> MCSDeviceRequestList;

3.1.7.5.5 ReasonForRequestFailure Enumeration

The CDI uses this enumeration to report problems responding to a data request from the IEN Site Server.
 enum ReasonForRequestFailure

 {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-36 September 6th, 2011

 /// requested event type not supported

 EVENT_TYPE_NOT_SUPPORTED,

 /// access to data for device denied

 ACCESS_DENIED,

 /// requested device does not exist

 NO_DEVICE,

 /// other unspecified failure

 OTHER

 };

3.1.7.5.6 RequestFailureStatus Structure

The CDI uses this structure to report the failure of one kind of event for one device.
 struct RequestFailureStatus

 {

 // Device for which request failed.

 MCSDATA::MCSDevice device;

 // Type of data requested.

 IENTCSData::IEN_EventType eventType;

 // Reason data request failed.

 ReasonForRequestFailure reason;

 };

3.1.7.5.7 RequestFailureStatusSeq Sequence

This is a sequence of RequestFailureStatus structures. The CDI returns a list of these sequences from its
getDeviceEventData32 method if any of the device/data type pairs requested by the IEN Site Server could
not be returned for one of the following reasons:

• The CDI does not support the requested data type for the given device type;
• The CDI cannot access the requested device due to security or other restrictions;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-37 September 6th, 2011

• The device does not exist;
• Some other internal problem.

3.1.7.6 MCSDataAccessor Interface
The MCSDataAccessor interface contains replacements for the deviceDataTypes, getDeviceList, and
getDeviceEventDataList methods that use 32-bit device identifiers and enumerated values for requested
data types.

 interface MCSDataAccessor : TCSData::DataAccessor {

 /// Get the event types supported for all device types

 /// for which this CDI returns data.

 /// @return supported data types for all supported devices

 MCSDeviceDataTypeList getDeviceEventTypes();

 ///Get a list of devices accessible to the IEN of the given types.

 ///@return The 32 bit version of the devices currently configured to

 ///report to the IEN.

 MCSDATA::MCSDeviceList getAvailableDevices32(

 in TCS::DeviceTypeList types);

 /// Request TCS data by device and event type from the CDI. The CDI

 /// should return all the data that it can in the set_update structure.

 /// For those requests that the CDI cannot satisfy, it should report the

 /// device ID, type and reason the request failed in the failed_requests

 /// sequence.

 ///

 /// @param device_requests List of devices and data types requested

 /// @param site_update Requested TCS data for those devices and

 /// event types that the CDI can satisfy. The

 /// site server fills in the site, system, and

 /// size_of_data fields. The CDI fills in the

 /// configUpdates, stateUpdates, and

 /// realTimeUpdates sequences. If there is no

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-38 September 6th, 2011

 /// data to report, the CDI may set the length

 /// of these sequences to zero.

 /// No data should be reported for failed

 /// requests or for change-only requests for

 /// which the device's configuration or state

 /// hasn't changed since the last report.

 /// The CDI should report the reasons for

 /// failed requests in the failed_requests

 /// parameter.

 /// @param failed_requests Reasons for failed requests. Should have

 /// one element for each request in

 /// device_requests for which there is an

 /// exceptional failure. No data reported to

 /// change-only requests is not considered a

 /// failure and should not be reported here.

 void getDeviceUpdate32(in MCSDeviceRequestList device_requests,

 inout SiteUpdate site_update,

 out RequestFailureStatusSeq failed_requests)

 raises (TCS::SystemStatusException,TCS::Error);

 };

The IEN Site Server will periodically call the getAvailableDevices32 method of the
MCSDataAccessor object to get the set of devices that it should request from the CDI. It will
call the getDeviceUpdate32 method once per second to get data on the available devices.
Most requests that it makes will have the changedOnly flag set, to reduce the traffic sent over the
IEN. Additionally, the IEN Site Server will not request rapidly changing intersection data,
which is to say any of the device data contained in the RealTimeUpdateGroup structure, from the
CDI unless a user interface application is requesting a real-time view of an intersection. The
applications that can show real-time intersection views are ATMS Explorer diagrams and the
IEN Intersection Monitor window.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-39 September 6th, 2011

3.1.8 TCSCommand.idl

The TCSCommand.idl file defines the TCSCommand module. It depends on the TCS.idl and
IENRtData.idl files. It defines the command interface for a version 2 CDI. This section of
the document lists the items in the TCSCommand.idl file that are still used for version 3 of the
CDI.

3.1.8.1 CommandsNotAccepted Exception

The command interface throws this exception to indicate that it is not accepting commands from
the IEN. The reason field is a free-form string that the CDI may set to report further details
about why commands are not accepted.
 exception CommandsNotAccepted

 {

 string reason;

 };

3.1.8.2 CommandAccessor Interface

The setCDIPlan, changeMode, and releaseControl methods in this interface have been
replaced in the new MCSCommandAccessor interface. However, the CDI should still implement
the clientName attribute and the destroy method.
 interface CommandAccessor: TCS::ConfigurationAccessor

 {

 /// Text passed to DataAccessorFactory::CreateDataAccessor()

 /// to create this instance.

 readonly attribute string clientName;

 /// Client calls this method when finished with this CommandAcceptor.

 /// Releases all resources associated with this instance.

 void destroy();

 /// Change CDI plan number

 ///

 /// @param devices List of devices for which to change the plan

 /// @param planNumber New plan number for the requested devices

 void setCDIPlan(

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-40 September 6th, 2011

 in TCS::DeviceList devices,

 in short planNumber

) raises (

 CommandsNotAccepted,

 InvalidPlanNumber,

 TCS::UnknownDevices,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Change operational mode of specified devices.

 ///

 /// @param devices List of devices for which to change the mode

 /// @param newMode New operational mode for the devices on the list

 void changeMode(

 in TCS::DeviceList devices,

 in TCS::Mode newMode

) raises (

 CommandsNotAccepted,

 InvalidMode,

 TCS::UnknownDevices,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Release IEN control of a list of TCS devices

 ///

 /// @param devices List of devices for which to release IEN control

 void releaseControl(

 in TCS::DeviceList devices

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-41 September 6th, 2011

) raises (

 TCS::UnknownDevices,

 TCS::SystemStatusException,

 TCS::Error

);

 };

3.1.8.3 CommandAccessorFactory Interface

The CDI must implement an object with this interface. The IEN Site Server must call the CDI’s
CommandAccessorFactory to get an instance of a CommandAccessor. A Version 3 CDI should
implement a CommandAccessorFactory that returns its MCSCommandAccessor cast to the old
CommandAccessor interface. The Site Server will check the version information for the
CommandAccessor; if the version information has a major revision of 3 or higher, it will try to
cast the CommandAccessor to an instance of MCSCommandAccessor.
 interface CommandAccessorFactory

 {

 /// Create an instance of DataAccessor.

 ///

 /// @param clientName Text identifying the user

 /// of this interface. For

 /// informational and diagnostic

 /// purposes.

 ///

 /// @param option Provides access to special

 /// functionality (generally for

 /// debugging or testing purposes).

 /// Always pass 0 unless you know

 /// what you're doing.

 CommandAccessor createCommandAccessor(

 in string clientName,

 in long option

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-42 September 6th, 2011

) raises (TCS::Error);

 };

3.1.9 MCSCommand.idl

The MCSCommand.idl file defines the MCSCommand module. It depends on the
TCSCommand.idl, TCS.idl and IENRtData.idl files. It defines the
MCSCommandAccessor interface, which the IEN Site Server program calls to send commands
from the IEN to traffic control devices on a TCS, and several exceptions and structures used in
methods that send commands to the TCS.

3.1.9.1 MCS Command Interface Version Numbers

The constants defined in the beginning of the MCSCommand module are the major version
number, minor version number, and revision number that should be returned by an
MCSCommandAccessor object to be recognized as an instance of the MCSCommandAccessor
object by IEN Site Server programs.
 const short majorVersion = 3;

 const short minorVersion = 0;

 const short revision = 0;

3.1.9.2 CommandResult Structure

The CommandResult structure contains the result for executing a command on a single device.
The accompanying CommandResultSequence is used in the MCSCommandAccessor interface to
report the results of commands.
 struct CommandResult {

 /// Type and ID of commanded device.

 MCSDATA::MCSDevice device;

 /// True if command successful, false if not.

 boolean isSuccessful;

 /// Free-form string for reporting the reason the command failed.

 string message;

 };

 typedef sequence<CommandResult> CommandResultSequence;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-43 September 6th, 2011

3.1.9.3 Command Exceptions

The following exceptions can be thrown by individual commands. They report 32-bit device IDs
of the devices for which the commands failed.
 /// Thrown if devices are specified that

 /// are unknown to TCS or not fully configured

 exception MCSUnknownDevices

 {

 MCSDATA::MCSDeviceList unknowns;

 };

 /// Thrown when a plan number is specified that is not

 /// supported by one or more of the devices in the

 /// command.

 exception MCSInvalidPlanNumber

 {

 short planNumber;

 MCSDATA::MCSDeviceList devices;

 };

 /// Thrown when a mode is specified that is not supported

 /// by one or more of the devices in the request.

 exception MCSInvalidMode

 {

 TCS::Mode invMode;

 MCSDATA::MCSDeviceList devices;

 };

 /// Thrown when a command is not supported by the CDI for one or more of the

 /// requested devices.

 exception MCSCommandNotSupported

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-44 September 6th, 2011

 {

 MCSData::MCSDeviceList devices;

 }

3.1.9.4 MCSCommandAccessor Interface

The IEN sends commands to traffic control system command/data interface programs using the
MCSCommandAccessor interface.
 interface MCSCommandAccessor: TCSCommand::CommandAccessor

 {

 ///Get a list of devices of the given types to which the IEN may give

 ///commands.

 ///

 ///@param types device types in which the caller is interested

 ///

 ///@return The 32 bit version of the devices that may currently accept

 /// commands from the IEN

 MCSDATA::MCSDeviceList getAvailableDevices32(

 in TCS::DeviceTypeList types);

 /// Change CDI plan number using 32-bit device IDs.

 ///

 /// @param devices List of devices for which to change the plan

 /// @param planNumber New plan number for the requested devices

 /// @return Results for command to each device on list

 /// @throws CommandsNotAccepted if

 CommandResultSequence setCDIPlan32(

 in MCSDATA::MCSDeviceList devices,

 in short planNumber

) raises (

 TCSCommand::CommandsNotAccepted,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-45 September 6th, 2011

 MCSInvalidPlanNumber,

 MCSUnknownDevices,

 MCSCommandNotSupported,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Change operational mode of specified devices using 32-bit device

 /// IDs.

 ///

 /// @param devices List of devices for which to change the mode with

 /// 32-bit device IDs.

 /// @param newMode New operational mode for the devices on the list

 /// @return Results for command to each device on list

 CommandResultSequence changeMode32(

 in MCSDATA::MCSDeviceList devices,

 in TCS::Mode newMode

) raises (

 TCSCommand::CommandsNotAccepted,

 MCSInvalidMode,

 MCSUnknownDevices,

 MCSCommandNotSupported,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Release IEN control of a list of TCS devices using 32-bit device

 /// IDs.

 ///

 /// @param devices List of devices for which to release IEN control

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-46 September 6th, 2011

 /// with 32-bit device IDs

 /// @return Results for command to each device on list

 CommandResultSequence releaseControl32(

 in MCSDATA::MCSDeviceList devices

) raises (

 MCSUnknownDevices,

 MCSCommandNotSupported,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Put MCS devices into flashing operation. Remove from flash by

 /// calling releaseControl32.

 ///

 /// @param devices List of devices to put into flash, with 32-bit

 /// device IDs.

 /// @return Results for flash command to each device on list

 CommandResultSequence flash32(

 in MCSDATA::MCSDeviceList devices

) raises (

 TCSCommand::CommandsNotAccepted,

 MCSCommandNotSupported,

 MCSUnknownDevices,

 TCS::SystemStatusException,

 TCS::Error

);

 };

3.1.9.4.1 setCDIPlan32 Method

The setCDIPlan method changes the timing plan or timing pattern number being run by a list of
intersection controllers and sections on the TCS. The CDI should make a “best effort” attempt to

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-47 September 6th, 2011

command the controllers and sections to run the requested timing pattern or plan number and
report the success or failure of commanding all devices in the list in the
CommandResultSequence that the method returns. If it cannot implement the command on one
of the requested devices due to an invalid plan number or an invalid device ID, it should raise an
MCSInvalidPlanNumber or MCSUnknownDevices exception. If the CDI does not support this
command, it should raise an MCSCommandNotSupported exception.

3.1.9.4.2 changeMode32 Method

changeMode32 changes the operating mode of the devices on the list to the requested mode. See
Table 3-1 for a list of operating modes usable in change mode command to a section or
intersection. (Note that the set of control modes available for commands differs from those that
can be reported by a CDI.)

The CDI should make a “best effort” attempt to change the mode of the requested controllers and
sections and report the success or failure of commanding all devices in the list in the
CommandResultSequence that the method returns. If it cannot implement the command on one
or more of the requested devices due to an invalid mode or unsupported control mode or an
invalid device ID, it should raise an MCSInvalidMode or MCSUnknownDevices exception. If the
interface does not support this command, it should raise an MCSCommandNotSupported
exception.

3.1.9.4.3 releaseControl 32Method

This method ends external control of all devices on the requested list. It terminates plan changes,
mode changes, or flash commands requested for the devices on the list. The CDI should return
the devices to the state desired by the TCS when the CDI receives the releaseControl32 method
call, and report the success or failure of releasing the requested controllers and sections from IEN
control in the CommandResultSequence that the method returns. If the interface does not support
this command, it should raise an MCSCommandNotSupported exception.

3.1.9.4.4 flash32 Method

This method starts flashing operation for a list of devices. The CDI should attempt to put the
requested intersections into flash, and report the success or failure of the command for all
devices in the list in the CommandResultSequence that the method returns. If it cannot
implement the command on one of the requested devices due to an invalid device ID, it should
raise an MCSUnknownDevices exception. If the interface does not support this command, it
should raise an MCSCommandNotSupported exception.

3.2 TCS CDI PERFORMANCE REQUIREMENTS

The TCS CDI has two sets of performance requirements. One set of requirements pertains to
handling data requests from the site server, and another to handling command requests passed
from the IEN through the Site Server to the CDI.

3.2.1 Data Access Requirements

The TCS CDI must be able to completely process a call to the MCSDataAccessor interface’s
getDeviceUpdate32 method within a half second.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-48 September 6th, 2011

The IEN Site Server requests data for most devices only if the data has changed since the last
data request. The Site Server requests full device data, whether or not it has changed since the
last request, on a different fraction (approximately 1/60th) of the TCS devices each second.
Consequently, it requests full state and configuration data on all devices exported by the TCS
once per minute.

3.2.2 Data Repor ting Requirements

When the Site Server queries a CDI for device data, the CDI must return a SiteUpdate structure
containing one or more device event structures with data for the requested devices, as described
in Sections 3.1.7.1, 3.1.7.2.14 and 3.1.7.4. Not all traffic control systems can respond with the
complete complement of data requested by the Site Server. For examples, some systems poll
controllers less frequently than once per second, while others do not poll controllers unless an
operator requests that they do so. This section describes which events the CDI must return when
the Site Server requests them, and which the CDI may omit.

Event types requested by the IEN fall in the following prioritized categories:
• Required – the CDI must always return events into this category when the Site Server requests

them.

• Required (If Supported) –The CDI must return events in this category when the Site Server
requests them if the CDI supports the related feature (system detectors and/or sections).

• Highly Desirable – The CDI should return events in this category to the Site Server if possible,
as they provide much of the utility of the IEN to users.

• Desirable – Desirable items returned by the CDI are helpful but not critical to the use of the IEN.

Please note that it is highly desirable that the IEN receive data from the TCS CDI on a once-per-
second basis. However, the IEN is capable of receiving data at whatever frequency the TCS
supports.

Table 3-4 below summarizes the event types used by the IEN and their priority. Text below will
discuss each event in detail.

Table 3-4: IEN Event Types

EVENT TYPE ENTITY
WHEN

REQUESTED PRIORITY

IEN_COMMANDRETURN Command N/A N/A

IEN_INTERSECTIONINFO Intersection Always Required

IEN_INTERSECTIONRTSTATUS Intersection If Subscribed Required

IEN_INTERSECTIONRTSUMMARY Intersection Always Required
Highly Desirable

Desirable

IEN_PHASE_STATEDATA Intersection If Subscribed Highly Desirable

IEN_PEDPHASE_STATEDATA Intersection If Subscribed Desirable

IEN_VEHCALL_STATEDATA Intersection If Subscribed Desirable

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-49 September 6th, 2011

EVENT TYPE ENTITY
WHEN

REQUESTED PRIORITY

IEN_LASTCYCLE_PHASEDATA Intersection If Subscribed Highly Desirable

IEN_TP_PHASEDATA Intersection If Subscribed Highly Desirable

IEN_DETECTORINFO Detector Always Required (If
Supported)

IEN_DETECTORSTATE Detector Always Required (If
Supported)

IEN_SECTIONINFO Section Always Required (If
Supported)

IEN_SECTIONSTATE Section Always Required (If
Supported)

3.2.2.1 IEN_INTERSECTIONINFO

The CDI is required to return an IntersectionInfo structure for an intersection controller when the
Site Server requests an event of type IEN_INTERSECTIONINFO for an intersection.

The IEN Site Server requests this type of data once per second for all configured intersections,
with the changedOnly flag set to false approximately once per minute.

3.2.2.2 IEN_INTERSECTIONRTSTATUS

It is highly desirable that the CDI return an IntersectionRTStatus structure for an intersection
controller when the Site Server requests an event of type IEN_INTERSECTIONRTSTATUS for
an intersection controller.

The IEN Site Server requests this type of data once per second for an intersection if one or more
IEN user interface programs have subscribed to real-time intersection data for that intersection.

3.2.2.3 IEN_INTERSECTIONRTSUMMARY

The CDI is required to return a structure of type IntersectionRTSummary when the Site Server
requests an event of type IEN_INTERSECTIONRTSUMMARY for an intersection. The CDI
must return its best guess of the timing plan ID, controller alarms, controller response state,
controller communication state, and whether main street green is active or not at the time of the
request. If either of the communication status values indicates a communication error to the
controller, the IEN will ignore the rest of the controller data until both fields indicate the CDI is
communicating with the controller.

It is highly desirable for the CDI to return usable data for the signal control mode, cycle length,
and desired and actual offset fields. The preemption type field is desirable, but may be set to
NO_PREEMPT if the controller’s preemption type is not known by the TCS at the time of the
request.

The IEN Site Server requests this type of data once per second for all configured intersections,
with the changedOnly flag set to false once per minute.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-50 September 6th, 2011

3.2.2.4 IEN_PHASE_STATEDATA

It is highly desirable for the CDI to return a structure of type PhaseStateData when the Site
Server requests an event of type IEN_PHASE_STATEDATA for an intersection controller. If
the CDI returns this data, it should send an event to the IEN every time that it is requested. If no
phases have changed state since the previous request, the CDI should send the same data to the
Site Server as before.

This data is used to drive IEN displays that show which phases are active on a controller
(controller headers and phase arrows in intersection diagrams and phase times in intersection
detail displays).

The IEN Site Server requests this type of data once per second for an intersection if one or more
IEN user interface programs have subscribed to real-time intersection data for that intersection.

3.2.2.5 IEN_PEDPHASE_STATEDATA

It is desirable for the CDI to return a structure of type PedestrianPhaseState when the Site Server
requests an event of type IEN_PEDPHASE_STATEDATA for an intersection controller. If the
CDI returns this data, it should send an event to the IEN every time that it is requested. If no
pedestrian displays have changed state since the previous request, the CDI should send the same
data as before.

The data in this event drives pedestrian walk/don’t walk symbols and pedestrian phase displays
in intersection header controls in intersection diagrams and the pedestrian phase displays in
intersection detail displays.

The IEN Site Server requests this type of data once per second for an intersection if one or more
IEN user interface programs have subscribed to real-time intersection data for that intersection.

3.2.2.6 IEN_VEHCALL_STATEDATA

It is desirable for the CDI to return a structure of type VehicleCallState when the Site Server
requests an event of type IEN_VEHCALL_STATEDATA for an intersection controller. If the
CDI returns this data, it should send an event to the IEN every time it is requested. If no vehicle
calls have changed state since the previous request, the CDI should send the same data as before.

The data in this event drives actuation detector symbols and the vehicle call displays in the
intersection header control in intersection diagrams, and the vehicle call displays in intersection
detail displays.

The IEN Site Server requests this type of data once per second for an intersection if one or more
IEN user interface programs have subscribed to real-time intersection data for that intersection.

3.2.2.7 IEN_LASTCYCLE_PHASEDATA

It is highly desirable that the CDI should return a structure of type LastCyclePhaseData when an
event of type IEN_LASTCYCLE_PHASEDATA is requested by the Site Server for an
intersection controller. The CDI should return this data at least once per cycle, preferably at the
beginning of the controller’s new cycle.

The data in this event drives the displays of the phase times in the last cycle shown in the
intersection header controls in intersection diagrams and in intersection detail displays.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-51 September 6th, 2011

The IEN Site Server requests this type of data for an intersection once per second if one or more
IEN user interface programs have subscribed to real-time intersection data for that intersection.

3.2.2.8 IEN_TP_PHASEDATA

It is highly desirable that the CDI should return a structure of type TpPhaseData when an event
of type IEN_TP_PHASEDATA is requested by the Site Server for an intersection controller.
The CDI should update this data when the controller changes the planned green times allotted to
any of its phases, such as when it changes timing plans or phase timing parameters.

The data in this event drives the displays of planned phase times in the intersection header
controls in intersection diagrams and in intersection detail displays.

The IEN Site Server requests this type of data for an intersection once per second if one or more
IEN user interface programs have subscribed to real-time intersection data for that intersection.

3.2.2.9 IEN_DETECTORINFO

If the CDI supports any system detectors, it is required to return a structure of type DetectorInfo
when the Site Server requests an event of type IEN_DETECTORINFO for a system detector. If
a TCS does not natively support volume plus weighted occupancy data, it is highly desirable for
the CDI to calculate V+kO and average V+kO values using a value of 30 for the weighting
factor.

The IEN Site Server requests this type of data for all configured detectors once per second, with
the changedOnly flag set to false approximately once per minute.

3.2.2.10 IEN_DETECTORSTATE

If the CDI supports any system detectors, it is required to return a structure of type DetectorState
when the Site Server requests an event of type IEN_DETECTORSTATE for a system detector.
The CDI should return new information in this event each time after the TCS uploads data from
a system detector. As noted in the previous section, if a TCS does not natively support V+kO
data, it is highly desirable for the CDI to calculate this data itself.

The IEN Site Server requests this type of data for all configured detectors once per second, with
the changedOnly flag set to false approximately once per minute.

3.2.2.11 IEN_SECTIONINFO

If the CDI supports sections, it is required to return a structure of type SectionInfo when the Site
Server requests an event of type IEN_SECTIONINFO for a section.

The IEN Site Server requests this type of data for all configured sections once per second, with
the changedOnly flag set to false approximately once per minute.

3.2.2.12 IEN_SECTIONSTATE

If the CDI supports sections, it is required to return a structure of type SectionState when the Site
Server requests an event of type IEN_SECTIONSTATE for a section.

The IEN Site Server requests this type of data for all configured sections once per second, with
the changedOnly flag set to false approximately once per minute.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-52 September 6th, 2011

3.2.3 Command Execution Requirements

The TCS CDI is required to process the following method calls to its MCSCommandAccessor
interface within 10 seconds:

• setCDIPlan32
• changeMode32
• releaseControl32
• flash32

3.3 USAGE OF THE CORBA NAMING SERVICE

The TCS CDI must publish references to its objects in the connecting IEN Site Server’s CORBA
Naming Service. The IEN Site Server program uses the naming service to locate the TCS CDI
CORBA objects. In the event of a naming service failure, the CDI must periodically attempt to
rebind its objects to the naming service. The attempt interval should be 5 minutes or less.

3.3.1 IEN Naming Service Location

A TCS CDI implementation must publish its CommandAccessorFactory and
DataAccessorFactory objects to the naming service instance running on port 14444 on the Site
Server machine at the site where the TCS CDI is running. The IEN network design requires that
there be a Site Server at every site that runs a TCS CDI.

The CDI should set its name service reference to the equivalent of the following URI:

corbaloc:iiop:<site server name>:14444/NameService

The <site server name> string should be replaced by the network node name of the Site Server at the
IEN site where the TCS CDI runs.

3.3.2 Published Names

The TCS CDI must publish two (2) names to the naming service, one for its
CommandAccessorFactory object, and the second for its DataAccessorFactory object. Each
name should have one element, with the ID and KIND fields set to the strings shown in Table
3-5.

Table 3-5: CDI Names in the Naming Service

OBJ ECT ID KIND

CommandAccessorFactory TCSCDICmd<Site_ID>:<System_ID> Site<Site_ID>

DataAccessorFactory TCSCDIData<Site_ID>:<System_ID> Site<Site_ID>

The <Site_ID> string should be replaced with the ID number assigned to the IEN site at which
the TCS CDI is running by Los Angeles County Department of Public Works (LACDPW). The
<System_ID> string should be replaced with the ID number assigned by LACDPW to the
particular TCS system at the site.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 3-53 September 6th, 2011

3.4 FIREWALL CONSIDERATIONS

In case a CDI must be installed at a site at which there is a firewall between the IEN Site Server
and the computer on which the CDI runs, it should be possible to configure a fixed IP port on
which the CDI creates its CORBA objects. This enables configuration of the firewall to allow
communication between the IEN Site Server and the CDI on the fixed port.

Most ORBs support configuring a process to register CORBA objects on a fixed port, but the
exact configuration method varies with different ORB implementations. For example, JacORB
uses a configuration file named jacorb.properties, OmniORB uses a configuration file named
omniorb.cfg, and TAO uses command line options and a configuration file named svc.conf.
Consult the documentation of each ORB for exact location, name, and contents of the relevant
configuration commands.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-1 September 6th, 2011

4. EXAMPLE IMPLEMENTATION

This section presents a sample CDI implementation based on the TransSuite® TCS CDI. TCS
CDI implementations for other traffic control systems may vary, but they must comply with the
TCS CDI interface requirements that were described above.

4.1 CORBA ORB USED

The IEN Site Server process runs on Microsoft Windows on an Intel Pentium-compatible
processor. It uses version 2.3 of the JacORB ORB, which is a Java ORB freely available at
http://www.jacorb.org/index.html.

The TransSuite® TCS CDI runs on Windows XP, Server 2003, or later system on an Intel
Pentium-compatible system. It also uses version 2.3 of JacORB.

4.2 IMPLEMENTATION ENVIRONMENT

TransCore wrote the TransSuite® TCS CDI in the Java programming language. It runs as
multiple threads in the TransSuite® TCS server process. A main CDI thread reports TCS device
data changes to the CDI and handles publishing of names of the MCSDataAccessor and
MCSCommandAccessor objects to the naming service.

4.3 CONFIGURATION DATA

The TransSuite® TCS CDI gets configuration data from shared objects that it receives from the
main TCS process. The configuration data contains the site server node name and site ID to
identify the TCS CDI on the network, and the data for intersection controllers, system detectors,
and sections that the CDI will export to the IEN.

4.4 IMPORTANT CDI METHODS
All of the code shown in this section comes from the main CDI class in the TransSuite® TCS CDI. The class
is shown in its entirety in the section named Appendix B: Example CDI Main Class below.

4.4.1 CDI Constructor
The constructor creates the data accessor factory and command accessor factory objects that will be
published in the CDI’s main thread.

 public IEN_CDI() {

 tcs_command_factory_ = new TCS_CommandAccessorFactory(getPoa());

 tcs_data_factory_ = new TCS_DataAccessorFactory(getPoa());

 }

4.4.2 TransSuite® TCS Main CDI Thread

This section describes the main thread for the TransSuite® TCS CDI.
 public void run() {

http://www.jacorb.org/index.html�

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-2 September 6th, 2011

 System.out.printf("%s %s","ien", "IEN Component has started running.");

 NamingContextExt naming_service = null;

 try {

In the section below, the CDI creates the command and data accessor factory objects.
 data_factory_ = getPoa()

 .servant_to_reference(tcs_data_factory_);

 command_factory_ = getPoa().servant_to_reference(

 tcs_command_factory_);

The routine then enters the main TCS loop, in which it locates the naming service and
republishes the names of the command and data factories, and then calls the performWork
method to accept CORBA calls from the site server.
 While (!Thread.currentThread().isInterrupted()) {

 naming_service = resolveNamingContext();

 System.out.printf(“%s %s”,”ien”, “IEN NamingContext resolved.”);

 if (bindFactories(naming_service)) {

 System.out.printf(“%s %s”, “Informational”,

 “All factories published. Waiting for IEN I/O.”);

 System.out.printf(“%s %s”, “ien”,

 “IEN Factories bound to the naming service.”);

 performWork(naming_service);

After the CDI determines that it must republish names, it deactivates any active accessor objects
to prepare for republication.
 tcs_data_factory_.deactivateAccessors();

 tcs_command_factory_.deactivateAccessors();

 } else {

 Thread.sleep(5000);

 }

 }

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-3 September 6th, 2011

Here the CDI catches the Java InterruptedException indicating that it should exit from the loop,
along with two CORBA exceptions, ServantNotActive and WrongPolicy.
 } catch (InterruptedException e) {

 // Just exit from the loop

 } catch (ServantNotActive e) {

 e.printStackTrace();

 } catch (WrongPolicy e) {

 e.printStackTrace();

 }

Finally, the CDI removes the accessor factory objects from the name service:
 cleanup(naming_service);

 System.out.printf("%s %s","ien", "IEN Component has stopped.");

 }

4.4.3 resolveNamingContext method

The CDI uses this method to locate the CORBA naming service on the IEN Site Server. It waits
until the thread is interrupted or it successfully locates the naming service.
 private NamingContextExt resolveNamingContext() throws InterruptedException {

 System.out.printf("%s %s","ien",

 "Resolving the IEN Site servers NameService");

 NamingContextExt naming_service = null;

 String error = null;

 int total_tries = 0;

 ORB orb = getOrb();

 while (!Thread.currentThread().isInterrupted()

 && naming_service == null) {

 String name_spec = "corbaloc:iiop:"

 + siteServerName + ":14444/NameService";

 total_tries += 1;

 try {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-4 September 6th, 2011

 System.out.printf("%s %s %s",

 "ien",

 "Resolving nameserver for the site server at ",

 siteServerName);

 org.omg.CORBA.Object obj = orb.string_to_object(name_spec);

 if (obj != null) {

 System.out.printf("%s %s",

 "ien",

 "ORB has resolved the initial reference "

 + name_spec + " attempting narrow");

 naming_service = NamingContextExtHelper.narrow(obj);

 } else {

 error = "Unable to get initial reference to Name Service using "

 + name_spec;

 }

 } catch (SystemException e) {

 error = "Unable to resolve naming service: "

 + e.getLocalizedMessage();

 } catch (Exception e) {

 error = "Unable to resolve naming service: "

 + e.getLocalizedMessage();

 }

 if (naming_service == null) {

 if (total_tries == 1 || total_tries % 600 == 0) {

 System.out.printf("%s %s", "Error",

 "Unable to intialize CORBA Components.");

 }

 if (error != null) {

 System.out.printf("%s %s","ien", error);

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-5 September 6th, 2011

 } else {

 System.out.printf("%s %s",

 "ien",

 "Unable to determine why the name service could not be "

 + "resolved.");

 }

 error = null;

 Thread.sleep(10000);

 }

 }

 if (naming_service != null) {

 System.out.printf("%s %s","ien", "Obtained naming service");

 } else {

 throw new InterruptedException();

 }

 return (naming_service);

 }

4.4.4 bindFactor ies Method
This method binds the CDI’s command accessor factory and data accessor factory objects to the proper
names in the naming service. It catches all CORBA exceptions, in which case it will return “false” to the
calling routine to indicate a problem interacting with the name service.

 private boolean bindFactories(NamingContextExt naming_service) {

 String error = null;

 boolean bound = false;

 try {

 String just_site_id = site_and_system_id_ ;

 int sys_ndx = just_site_id.indexOf(":");

 if (sys_ndx != -1) {

 just_site_id = just_site_id.substring(0, sys_ndx);

 }

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-6 September 6th, 2011

 naming_service.rebind(new NameComponent[] { new NameComponent(

 "TCSCDIData" + site_and_system_id_, "Site"

 + just_site_id) }, data_factory_);

 naming_service.rebind(new NameComponent[] { new NameComponent(

 "TCSCDICmd" + site_and_system_id_, "Site"

 + just_site_id) }, command_factory_);

 bound = true;

 } catch (Exception e) {

 error = "Unable to bind factories Exception: "

 + e.getClass().getCanonicalName() + " message "

 + e.getLocalizedMessage();

 }

 if (error != null) {

 System.out.printf("%s %s","ien", error);

 }

 return (bound);

 }

4.4.5 performWork Method
The performWork method is the inner loop of the CDI, in which it passes control to the ORB and gives up
the CPU to other threads in the TCS. It leaves this loop either if the naming service reference becomes
unusable, the thread is interrupted, or an exception is thrown.

 private void performWork(NamingContextExt naming_service)

 throws InterruptedException

 {

 ORB orb = getOrb();

 try {

 while (!Thread.currentThread().isInterrupted()

 && !naming_service._non_existent()) {

 if (orb.work_pending()) {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-7 September 6th, 2011

 orb.perform_work();

 }

 Thread.sleep(IEN_Waiting_Period);

 total_loops_ += 1;

 }

 } catch (SystemException e) {

 System.out.printf("%s %s: %s", "Error",

 "Exception occured while running the IEN interface",

 e.getLocalizedMessage());

 e.printStackTrace();

 }

 }

4.4.6 cleanup method
This method is called when the CDI is shutting down. It deactivates any active data or command
accessor objects, then unbinds the command and data accessor factory objects from the name service.

 private void cleanup(NamingContextExt naming_service)

 {

 if (data_factory_ != null) {

 tcs_data_factory_.deactivateAccessors();

 try {

 getPoa().deactivate_object(

 getPoa().reference_to_id(data_factory_));

 } catch (Exception e) {

 }

 }

 if (command_factory_ != null) {

 tcs_command_factory_.deactivateAccessors();

 try {

 getPoa().deactivate_object(

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-8 September 6th, 2011

 getPoa().reference_to_id(command_factory_));

 } catch (Exception e) {

 }

 }

 if (naming_service != null) {

 unbindFactories(naming_service);

 }

 }

4.4.7 unbindFactor ies method
The unbindFactories method is called from the cleanup method to remove the data and command
accessor factory object’s names from the CORBA naming service.

 /**

 * Unbinds the factories from the naming service.

 *

 * @param naming_service

 * NamingContextExt The naming context to unbind from.

 *

 * @return boolean True indicates that the data and command interfaces have

 * been unbound from the given naming context false indicates that

 * there was some problem unbinding the components from the name

 * service

 */

 private boolean unbindFactories(NamingContextExt naming_service) {

 String error = null;

 boolean unbound = false;

 try {

 naming_service.unbind(new NameComponent[] { new NameComponent(

 "TCSCDIData" + site_and_system_id_, "Site"

 + site_and_system_id_) });

 naming_service.unbind(new NameComponent[] { new NameComponent(

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 4-9 September 6th, 2011

 "TCSCDICmd" + site_and_system_id_, "Site"

 + site_and_system_id_) });

 unbound = true;

 } catch (Exception e) {

 error = "Unable to unbind the factories from the naming service: "

 + e.getClass().getCanonicalName() + " message "

 + e.getLocalizedMessage();

 }

 if (error != null) {

 System.out.printf("%s %s","ien", error);

 }

 return (unbound);

 }

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-1 September 6th, 2011

5. APPENDICES

5.1 APPENDIX A: TCS CDI CORBA IDL FILES

5.1.1 IEN.idl
//---

// Copyright 2001, 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

//---

// $Id: IEN.idl,v 1.7 2009/04/23 21:13:47 mayoj Exp $

//

// Core CORBA type and interface definitions for IEN

//---

#ifndef IEN_IDL

#define IEN_IDL

//#include "sctypes.idl" // Showcase data types

#pragma prefix "transcore.com"

module IEN

{

 const string IDLFileID = "$Id: IEN.idl,v 1.6 2009/02/10 23:24:06 mayoj Exp $";

 // Define abbreviations for long type names

 typedef octet Byte;

 typedef unsigned short UShort;

 typedef unsigned long ULong;

 // Define sequence types for all basic types

 typedef sequence<boolean> BooleanSeq;

 typedef sequence<Byte> ByteSeq;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-2 September 6th, 2011

 typedef sequence<short> ShortSeq;

 typedef sequence<UShort> UShortSeq;

 typedef sequence<long> LongSeq;

 typedef sequence<ULong> ULongSeq;

 typedef sequence<float> FloatSeq;

 typedef sequence<double> DoubleSeq;

 typedef sequence<string> StringSeq;

 typedef sequence<any> AnySeq;

 // Define types of IEN system entities

 // REVIEW_KDJ: Change this to an 'octet' type

 enum EntityType

 {

 ENTITYTYPE_NOT_AVAILABLE, // none/unknown

 ENTITYTYPE_INTERSECTION, // INT Intersection Controller

 ENTITYTYPE_DETECTOR, // DET VSO Detector

 ENTITYTYPE_SECTION, // SEC Group of intersections

 ENTITYTYPE_TCS, // TCS Traffic Control System

 ENTITYTYPE_LINK, // LNK Roadway Link

 ENTITYTYPE_HOST, // HST Workstation/Server

 ENTITYTYPE_DMS, // DMS Dynamic Message Sign

 ENTITYTYPE_CAMERA, // CAM

 ENTITYTYPE_USER, // USR

 ENTITYTYPE_ALARM, // ALM

 ENTITYTYPE_INCIDENT, // INC

 ENTITYTYPE_PLANNED_EVENT, // PLN

 ENTITYTYPE_SCENARIO_PLAN, // SCN Scenario Plan

 ENTITYTYPE_SCENARIO_ACTIVATION, // ACT Activated Scenario

 ENTITYTYPE_RAMP, // RMP Ramp Meter

 ENTITYTYPE_HAR, // HAR Highway Advisory Radio

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-3 September 6th, 2011

 ENTITYTYPE_ESS, // ESS Environmental Sensor Station

 ENTITYTYPE_CORRIDOR, // COR Corridor

 ENTITYTYPE_SITE, // SIT site

 ENTITYTYPE_USER_GROUP, // GRP user group

 ENTITYTYPE_RESOURCE_GROUP // RGP resource group

 };

 // Identification number of a corridor

 typedef short CorridorID;

 const CorridorID LOCAL_CORRIDOR = 0;

 // Identification number of a site within a corridor

 typedef short SiteID;

 const SiteID LOCAL_SITE = 0;

 // Identification number of a system within a site

 typedef octet SystemID;

 const SystemID LOCAL_SYSTEM = 0;

 // Identification number of an entity of a particular type within a system

 typedef long EntityNumber;

 const EntityNumber NULL_ENTITY = 0;

 // Unique identification information for an entity

 struct EntityID

 {

 CorridorID corridor; // zero means "local corridor"

 SiteID site; // zero means "local site"

 SystemID system; // zero means "local system"

 octet type; // value from EntityType enumeration

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-4 September 6th, 2011

 EntityNumber number; // identification number

 };

 typedef sequence<EntityID> EntityIDSeq;

 typedef string<32> Identifier;

 const short IdentifierLenMax = 32; // from TMDD

 typedef sequence<Identifier> IdentifierSeq;

 typedef string<64> Description;

 const short DescriptionLenMax = 64;

 typedef sequence<Description> DescriptionSeq;

 // Time and date representations follow the conventions used in the TMDD.

 // They are integers of the forms YYYYMMDD and HHMMSS.

 //

 // For example, May 19, 2000 would be 20000519 and 2:00 PM would be 140000.

 //

 // All times are UTC.

 // REVIEW_KDJ: Replace this with something standard?

 typedef long YYYYMMDD;

 typedef long HHMMSS;

 struct Timestamp

 {

 YYYYMMDD date;

 HHMMSS time;

 };

 typedef sequence<Timestamp> TimestampSeq;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-5 September 6th, 2011

 // Thrown when an attempt is made to use a string that

 // is longer than is allowed

 exception StringTooLong

 {

 string reason;

 string details;

 string badString; // the string that caused the error

 };

 // Thrown when an attempt is made to use an empty string for

 // a data value that requires a non-empty string

 exception EmptyStringNotAllowed

 {

 string reason;

 string details;

 };

 // Thrown when a request is made for an entity that does

 // not exist

 exception NoSuchEntity

 {

 string reason;

 string details;

 EntityID entity;

 };

 // Thrown when a request is made for an entity that does

 // not support the Entity object interface

 exception NoEntityInterface

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-6 September 6th, 2011

 {

 string reason;

 string details;

 EntityID entity;

 };

 // Thrown by objects that do not implement "optional" methods

 exception OptionNotImplemented

 {

 string reason;

 string details;

 };

 // Thrown when a request is made using data that is "old"

 exception OutOfDate

 {

 string reason;

 string details;

 Timestamp newTime;

 };

 // Thrown when a request cannot be satisfied because a

 // system component is not running or is otherwise unavailable

 exception ServiceNotAvailable

 {

 string reason;

 string details;

 };

 // Thrown when a request has been made for data that is

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-7 September 6th, 2011

 // temporarily unavailable (due to loss of network connection,

 // for example)

 exception DataNotAvailable

 {

 string reason;

 string details;

 };

 // Thrown when a request has been made for data that does

 // not exist (note: use the NoSuchEntity exception if the missing

 // data corresponds to an EntityID)

 exception DataNotFound

 {

 string reason;

 string details;

 };

 // Thrown when a request has been made that is unable to complete

 // because data cannot be written permanently

 exception DataWriteError

 {

 string reason;

 string details;

 };

 // Thrown when a request has been made to use data that

 // is not of the valid form or range

 exception DataValidationError

 {

 string reason;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-8 September 6th, 2011

 string details;

 };

 // Any IEN interface that supports a ping() method should be

 // derived from Pingable

 // (This is derived from the NRTDS.)

 interface Pingable

 {

 void ping();

 // The "debug ping" method provides a back door for triggering

 // implementation-specific behavior. It is intentionally left

 // undefined, and should only be used for debugging and

 // diagnostic purposes. It allows developers to add special

 // methods to objects without modifying the interfaces.

 //

 // 'auth' should contain authentication information from the

 // caller (or be empty), and 'value' can be whatever

 //

 // The caller of the function needs to know what to do with

 // the returned 'any' value.

 any debug_ping(

 in any auth,

 in any value

) raises (

 OptionNotImplemented

);

 };

 // All objects that represent "entities" should implement

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-9 September 6th, 2011

 // the Entity interface

 interface Entity: Pingable

 {

 readonly attribute CorridorID corridor; // zero means "local corridor"

 readonly attribute SiteID site; // zero means "local site"

 readonly attribute octet system; // zero means "local system"

 readonly attribute octet type; // value from EntityType
enumeration

 readonly attribute EntityNumber number; // identification number

 readonly attribute EntityID eid; // full EntityID structure

 readonly attribute Identifier name; // brief name

 readonly attribute Description desc; // verbose description

 };

 typedef sequence<Entity> EntitySeq;

 // This exception is thrown by iterator interfaces' max_left()

 // method when the number of remaining elements is unknown

 exception UnknownMaxLeft

 {

 string reason;

 string details;

 };

 // Iterator for a set of EntityID structures

 interface EntityIDIterator

 {

 // Return true and the next N (or fewer) elements,

 // or return false if no more elements are available

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-10 September 6th, 2011

 boolean next_n(

 in unsigned long n,

 out EntityIDSeq eids

);

 // Return the number of elements that have not yet been

 // returned by the iterator

 unsigned long max_left()

 raises (UnknownMaxLeft);

 // Release the iterator

 void destroy();

 };

 // Iterator for a set of Entity object interfaces

 interface EntityIterator

 {

 // Return true and the next N (or fewer) elements,

 // or return false if no more elements are available

 boolean next_n(

 in unsigned long n,

 out EntitySeq entities

);

 // Return the number of elements that have not yet been

 // returned by the iterator

 unsigned long max_left()

 raises (UnknownMaxLeft);

 // Release the iterator

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-11 September 6th, 2011

 void destroy();

 };

 // All objects that "manage" a set of entities should inherit from

 // the EntityManager interface

 interface EntityManager: Pingable

 {

 // Return IDs of all entities of given type

 // (use ENTITYTYPE_NOT_AVAILABLE to get all entities)

 void listEntityIDs(

 in EntityType type,

 in unsigned long how_many,

 out EntityIDSeq eids,

 out EntityIDIterator itr

);

 // Return interface to given entity

 Entity getEntity(

 in EntityID eid

) raises (

 NoSuchEntity,

 NoEntityInterface,

 OptionNotImplemented

);

 // Return interface pointers to all entities of given type

 // (use ENTITYTYPE_NOT_AVAILABLE for all entities)

 void listEntities(

 in EntityType type,

 in unsigned long how_many,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-12 September 6th, 2011

 out EntitySeq entities,

 out EntityIterator itr

) raises (

 NoEntityInterface,

 OptionNotImplemented

);

 };

 // Service Context ID for implicit IEN-related information

 // in GIOP messages; this value has been allocated by the OMG.

 //

 // (If additional Service Context IDs are ever needed, it is

 // recommended that the range 0x49454E00-0x49454E0F be allocated.)

 const unsigned long ServiceContextID = 0x49454E00; // "IEN\0"

};

#endif

//---

// Copyright 2001, 2009 County of Los Angeles. All Rights Reserved.

//---

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-13 September 6th, 2011

5.1.2 IENRTData.idl
//---

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

//---

// $Id: IENRTData.idl,v 1.6 2009/05/21 17:08:07 build Exp $

//

//---

#ifndef IENRTDATA_IDL

#define IENRTDATA_IDL

#pragma prefix "transcore.com"

/// CORBA type definitions for IEN Real-time Data Distribution subsystem.

/// For MCS, only the DeviceType enumeration is still used. The other types

/// defined here are obsolete.

module IENRTData

{

 const string IDLFileID = "$Id: IENRTData.idl,v 1.5 2009/01/30 14:15:26 mayoj Exp
$";

 struct Event

 {

 short entityNumber; // entity number (unique to system and event
type)

 short ienEventType; // type of event (see above)

 long timeStamp; // in the format HHMMSS

 sequence<long> longValues; // sequence of 32-bit values

 sequence<short> shortValues; // sequence of 16-bit values

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-14 September 6th, 2011

 sequence<octet> octetValues; // sequence of bytes

 string stringValue;

 double doubleValue;

 };

 typedef sequence<Event> EventSeq;

 // Event group, consisting of a sequence of events and the identity

 // of the generating system.

 struct EventGroup

 {

 short corridor;// id for corridor generating this events

 short site; // id for site generating this events

 short system; // id for system generating this events

 short sites; // bit map of sites that request these data

 EventSeq events; // event data

 };

 typedef sequence<EventGroup> EventGroupSeq;

 // smm/TransCore/atl 2/04 - Added next group of Device Type definitions

 // so as to have all defice types defined in a

 // central location.

 /// IEN System wide device types (Note: When changing number of

 /// items in this list, modify value of DT_COUNT to reflect

 /// correct number)

 enum DeviceType

 {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-15 September 6th, 2011

 DT_SYSTEM,

 DT_SCHEDULE,

 DT_INTERSECTION,

 DT_SECTION,

 DT_DETECTOR,

 DT_SIGN,

 DT_CAMERA,

 DT_HAR,

 DT_DETECTOR_STATION

 };

 // Constant used to indicate number of type we have defined

 const short DT_COUNT = 8;

};

#endif

//---

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//---

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-16 September 6th, 2011

5.1.3 TCS.idl
// --

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

// --

// $Id: tcs.idl,v 1.7 2009/01/23 20:52:25 build Exp $

//

// Basic definitions for CORBA interface to Generic TCS

// --

#ifndef TCS_IDL

#define TCS_IDL

#pragma prefix "transcore.com"

#include "IENRTData.idl"

module TCS

{

 typedef sequence<IENRTData::DeviceType> DeviceTypeList;

 /// Modes of operation

 enum Mode

 {

 NORMAL,

 LOCAL_TOD,

 FREE,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-17 September 6th, 2011

 TOD,

 RESPONSIVE,

 MANUAL,

 RELEASE

 };

 /// Device identifier number

 typedef short DeviceID;

 /// Unique identifier for a device in a given TCS

 struct Device

 {

 IENRTData::DeviceType type;

 DeviceID id;

 };

 /// List of Device elements

 typedef sequence<Device> DeviceList;

 /// This exception is thrown when something goes wrong that

 /// is not covered by a more specific exception

 exception Error

 {

 string reason;

 };

 /// Thrown by methods if devices are specified that

 /// are unknown to TCS or not fully configured

 exception UnknownDevices

 {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-18 September 6th, 2011

 DeviceList unknowns;

 };

 /// Version number (major.minor.revision)

 struct Version

 {

 short major;

 short minor;

 short revision;

 };

 /// System status codes

 enum Status

 {

 /// Running normally

 SYSTEM_NORMAL,

 /// Initializing; features may be unavailable or uninitialized

 SYSTEM_STARTING,

 /// Shutting down; features may be unavailable or no longer updated

 SYSTEM_STOPPING,

 /// TCS is not running

 SYSTEM_SHUTDOWN,

 /// TCS *is unable to run

 SYSTEM_ERROR

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-19 September 6th, 2011

 /// This exception is thrown when a client attempts an operation while

 /// TCS is in a state that does not allow it.

 exception SystemStatusException

 {

 Status systemStatus;

 };

 /// Interface that provides client with means to discover what

 /// devices are available from the TCS, and other

 /// high-level aspects of the system.

 interface ConfigurationAccessor

 {

 /// @return Version number for TCS CORBA interface

 readonly attribute Version interfaceVersion;

 /// @return Version of TCS software

 readonly attribute Version systemVersion;

 /// @return Name of TCS system

 readonly attribute string systemName;

 /// @return Current status of TCS

 readonly attribute Status systemStatus;

 /// @return list of configured devices of the given types

 DeviceList getAvailableDevices(in DeviceTypeList types);

 };

};

#endif

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-20 September 6th, 2011

//---

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//---

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-21 September 6th, 2011

5.1.4 IENTCSData.idl
//---

// Copyright 2001, 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

//---

// $Id: IENTCSData.idl,v 1.16 2009/04/23 21:14:33 mayoj Exp $

//

// CORBA type definitions for IEN Traffic Control System (TCS)

// Command/Data Interface (CDI).

//

// All traffic control systems will not support all of these elements.

// For enumerated types, an "OTHER_NO_ADDITIONAL" value signifies that

// the TCS cannot translate its elements to a meaningful form. For

// integer types, any value less than 0 generally indicates an unsupported

// data element.

//---

#ifndef IENTCSDATA_IDL

#define IENTCSDATA_IDL

#include "tcs.idl"

#include "IENRTData.idl"

#pragma prefix "transcore.com"

module IENTCSData

{

 const string IDLFileID = "$Id: IENTCSData.idl,v 1.16 2009/04/23 21:14:33 mayoj Exp
$";

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-22 September 6th, 2011

 /// Types of device data to request from CDI.

 enum IEN_EventType

 {

 IEN_COMMANDRETURN,

 IEN_INTERSECTIONRTSTATUS,

 IEN_INTERSECTIONRTSUMMARY,

 IEN_PHASE_STATEDATA,

 IEN_PEDPHASE_STATEDATA,

 IEN_VEHCALL_STATEDATA,

 IEN_LASTCYCLE_PHASEDATA,

 IEN_DETECTORSTATE,

 IEN_INTERSECTIONINFO,

 IEN_DETECTORINFO,

 IEN_TP_PHASEDATA,

 IEN_SECTIONINFO,

 IEN_SECTIONSTATE

 };

 /// Status information returned from commands.

 enum IEN_CommandReturns {

 IEN_COMMAND_OK,

 ERR_CORRIDOR_BROKEN,

 ERR_SITE_BROKEN,

 ERR_CDISYS_BROKEN,

 ERR_CDISYS_UNAVL,

 ERR_INVALID_USER,

 ERR_INVALID_SITE,

 ERR_INVALID_CORRIDOR,

 ERR_INVALID_CDISYS,

 ERR_INVALID_CMDCODE,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-23 September 6th, 2011

 ERR_INVALID_CMDPARA,

 ERR_INVALID_DEVTYPE,

 ERR_INVALID_DEVNUM

 };

// INTERSECTION DATA

 // Timing plan selection modes reported for intersection controllers.

 enum SignalControlMode

 {

 ISC_OTHER_NO_ADDITIONAL, // A mode other than those here

 ISC_OTHER_ADDITIONAL, // Deprecated

 ISC_FREE, // free

 ISC_FIXED_TIME, // Fixed length phases

 ISC_TIME_BASE_COORDINATION, // Coordinated clock-based plan

 ISC_ACTUATED, // Fully actuated ctrl (like free)

 ISC_SEMI_ACTUATED, // Semi-actuated (redundant with

 // time based coordination,

 // deprecated

 ISC_CRITICAL_INTERSECTION_CONTROL, // Split adjustment based on traffic

 // at a critical intersection

 ISC_TRAFFIC_RESPONSIVE, // Traffic responsive plan selection

 ISC_ADAPTIVE, // Using an adaptive algorithm

 ISC_TRANSITION, // Transition between plans

 ISC_EXTERNAL, // Plan from external system

 ISC_ATCS, // Special LADOT adaptive mode

 ISC_UNKNOWN

 };

 enum IntersectionSignalState

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-24 September 6th, 2011

 {

 ISS_OTHER_NO_ADDITIONAL, // Obsolete, do not use

 ISS_OTHER_ADDITIONAL, // Obsolete, do not use

 NORMAL_OPERATION, // Intersection operating normally

 FLASH, // Intersection is flashing

 PREEMPTION, // Preemption input active

 CONFLICT_FLASH, // Flashing due to conflict monitor

 FAILED, // Central system has failed the

 // controller

 ISS_UNKNOWN // State unknown

 };

 enum ControllerResponseState

 {

 RESPONDING_OTHER_NO_ADDITIONAL, // Obsolete, do not use

 RESPONDING_OTHER_ADDITIONAL, // Obsolete, do not use

 RESPONDING, // Responded to last comm attempt

 NOT_RESPONDING, // No response to last comm attempt

 UNKNOWN // Response state unknown

 };

 enum PreemptType

 {

 PREEMPT_OTHER_NO_ADDITIONAL, // Preempt of type other than those

 // in this enumeration

 PREEMPT_OTHER_ADDITIONAL, // Obsolete, do not use

 NO_PREEMPT, // No preemption in effect

 GENERAL_PREEMPT, // General preemption

 BRIDGE_PREEMPT, // Preemption by bridge

 EV_PREEMPT, // Preemption for emergency vehicle

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-25 September 6th, 2011

 LRT_PREEMPT, // Preempt for light rail train

 RR_PREEMPT, // Railroad preempt

 PREEMPT_UNKNOWN // Preempt of unknown type

 };

 enum CommState

 {

 COMM_OTHER_NO_ADDITIONAL, // Obsolete, do not use

 COMM_OTHER_ADDITIONAL, // Obsolete, do not use

 COMM_GOOD, // Comm from central to ctrlr good

 // enough for central

 COMM_BAD, // Comm from central to ctrlr too

 // bad to use reliably

 COMM_UNKNOWN // Central can't determine comm

 // state to ctrlr, due to comm eqpmt

 // failure or ctrlr offline

 };

 /** Controller alarm bitmasks */

 const short NO_ALARM = 0x00;

 const short CONFLICT_FLASH_ALARM = 0x01;

 const short CABINET_DOOR_OPEN_ALARM = 0x02;

 const short TRANSITION_ALARM = 0x04;

 const short INTERNAL_ERROR_ALARM = 0x08;

 const short FLASH_ALARM = 0x10;

// DETECTOR DATA

 /// Operational status of a detector.

 enum DetectorStatus

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-26 September 6th, 2011

 {

 /// Other state; no additional details available

 DETECTOR_OTHER_NO_ADDITIONAL,

 /// Other state; additional details available through

 /// device-specific interface

 DETECTOR_OTHER_ADDITIONAL,

 /// Enabled but not working due to hardware or comm failure

 DETECTOR_FAILED,

 /// working

 DETECTOR_OPERATIONAL,

 /// intentionally disabled

 DETECTOR_OFF,

 /// Detector state unknown due to communication problems, system

 /// configuration, or other central system problems.

 DETECTOR_UNKNOWN

 };

 /// Usage of the detector in the traffic system.

 enum DetectorClass

 {

 DC_OTHER_NO_ADDITIONAL,

 DC_OTHER_ADDITIONAL,

 DC_STOP_BAR,

 DC_SYSTEM,

 DC_PEDESTRIAN,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-27 September 6th, 2011

 DC_ADAPTIVE,

 DC_CALL,

 DC_EXTENSION,

 DC_MAINLINE,

 DC_REVERSIBLE_LANE,

 DC_RAMP_DEMAND,

 DC_RAMP_MERGE,

 DC_RAMP_PASSAGE,

 DC_RAMP_QUEUE,

 DC_UNKNOWN

 };

 /// Vehicle detection technique used by the detector.

 enum DetectorType

 {

 DT_OTHER_NO_ADDITIONAL,

 DT_OTHER_ADDITIONAL,

 DT_INDUCTIVE_LOOP,

 DT_MAGNETIC,

 DT_MAGNETOMETERS,

 DT_PRESSURE_CELLS,

 DT_MICROWAVE_RADAR,

 DT_ULTRASONIC,

 DT_VIDEO_IMAGE,

 DT_LASER,

 DT_INFRARED,

 DT_ROAD_TUBE,

 DT_UNKNOWN

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-28 September 6th, 2011

 /// Direction of traffic flow on a roadway or past a detector.

 enum Direction

 {

 EastBound,

 WestBound,

 SouthBound,

 NorthBound,

 SouthEastBound,

 SouthWestBound,

 NorthEastBound,

 NorthWestBound,

 InBound,

 OutBound,

 None,

 East_West, // Bi-directional east & west

 North_South, // Bi-directional north & sourth

 NE_SW, // Bi-directional northest and southwest

 NW_SE, // Bi-directional northwest and southeast

 InBound_and_Outbound, // Bi-directional in and outbound

 Other // When none of the above will do . . .

 };

};

module TCSData

{

 /// Major version, minor version, and revision of this IDL interface

 const short majorVersion = 2;

 const short minorVersion = 0;

 const short revision = 1;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-29 September 6th, 2011

 /// Item codes are not defined in IDL; they are

 /// documented elsewhere

 typedef short Code;

 /// List of data item code elements

 typedef sequence<Code> CodeList;

 /// Data types returned for a given device type

 struct DeviceDataTypes

 {

 IENRTData::DeviceType type;

 CodeList dataTypes;

 };

 /// List of data types for all supported devices.

 typedef sequence<DeviceDataTypes> DeviceDataTypeList;

 /// A device ID followed by a list of data codes supported by the

 /// device, and a flag to indicate if the CDI should retrieve all

 /// data for the device or only changed data.

 struct DeviceCode

 {

 TCS::Device device;

 CodeList dataCodes;

 boolean changedOnly;

 };

 /// List of DeviceCode elements

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-30 September 6th, 2011

 typedef sequence<DeviceCode> DeviceCodeList;

 /// Interface for retrieving data from TCS

 interface DataAccessor : TCS::ConfigurationAccessor {

 /// Instance name passed to DataAccessorFactory's

 /// CreateDataAccessor() method to create this instance.

 readonly attribute string clientName;

 /// Client calls this method when finished with this

 /// DataAccessor. Releases all resources associated with this

 /// instance.

 void destroy();

 /// @return the configured device list for this instance.

 TCS::DeviceList getDeviceList();

 /// Get the data type codes supported for all device types

 /// for which this CDI returns data.

 /// @return supported data types for all supported devices

 DeviceDataTypeList deviceDataTypes();

 /// @return Data items for input device list.

 ///

 /// @param devices List of devices for which to get data. Each

 /// entry in the list has a device ID, requested

 /// data types, and a changeOnly flag indicating

 /// if the method should retrieve only changed

 /// data (if true), or all known data (if false).

 /// @return Sequence of IEN events containing requested

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-31 September 6th, 2011

 /// requested data

 /// @throws SystemStatusException if system not currently

 /// running

 /// @throws Error if a device ID or data type in the

 /// device list is not supported.

 IENRTData::EventSeq getDeviceEventDataList(

 in DeviceCodeList devices)

 raises (TCS::SystemStatusException,

 TCS::Error);

 };

 /// Interface for creating instances of DataAccessor

 interface DataAccessorFactory

 {

 /// Create an instance of DataAccessor.

 ///

 /// @param clientName Text identifying the user

 /// of this interface. For

 /// informational and diagnostic

 /// purposes only.

 ///

 /// @param option Provides access to special

 /// functionality (generally for

 /// debugging or testing purposes).

 /// Always pass 0 unless you know

 /// what you're doing.

 /// @throws Error If the client name is empty or the

 /// option is not supported

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-32 September 6th, 2011

 DataAccessor createDataAccessor(in string clientName,

 in long option)

 raises (TCS::Error);

 };

};

#endif

//--

// Copyright 2001, 2009 County of Los Angeles. All Rights Reserved.

//--

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-33 September 6th, 2011

5.1.5 MCSData.idl
// --

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

// --

// $Id: mcsdata.idl,v 1.2 2009/02/18 16:41:05 mayoj Exp $

//

// Data definitions for MCS interfaces

// --

#ifndef MCSDATA_IDL

#define MCSDATA_IDL

#pragma prefix "transcore.com"

#include "IENRTData.idl"

#include "IENTCSData.idl"

module MCSDATA

{

 ///NEW: 32 bit device identifier instead of 16 bit.

 typedef long MCSDeviceID;

 typedef sequence<MCSDeviceID> MCSDeviceIDList;

 ///NEW: 32 bit device identifier instead of 16 bit.

 ///System ID moved into SiteUpdate in MCSDataInterface.idl.

 struct MCSDevice

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-34 September 6th, 2011

 {

 IENRTData::DeviceType type;

 MCSDeviceID id;

 };

 ///NEW: 32 bit device identifier instead of 16 bit.

 typedef sequence<MCSDevice> MCSDeviceList;

 /// A sequence of device event types

 typedef sequence<IENTCSData::IEN_EventType> EventTypeList;

};

#endif

//---

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//---

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-35 September 6th, 2011

5.1.6 MCSDataInter face.idl
//---

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

//---

// $Id: MCSDataInterface.idl,v 1.13 2009/06/16 14:31:58 build Exp $

//---

#ifndef MCS_DATA_INTERFACE_IDL

#define MCS_DATA_INTERFACE_IDL

#include "IEN.idl"

#include "IENTCSData.idl"

#include "tcs.idl"

#include "mcsdata.idl"

module MCSDataInterface {

 const short majorVersion = 3;

 const short minorVersion = 0;

 const short revision = 0;

 ///Configuration information for a controller.

 struct IntersectionInfo

 {

 ///ID of the controller.

 MCSDATA::MCSDeviceID id;

 ///The EntityID of the section to which this intersection belongs. -1 if

 /// it is not a member of a section.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-36 September 6th, 2011

 long sectionID;

 ///Seconds between poll attempts to the intersection controller.

 short secondsBetweenPollAttempts;

 ///The name of the cross street of the intersection.

 string crossStreet;

 ///The name of the main street of the intersection.

 string mainStreet;

 ///The direction of traffic flow on the main street.

 IENTCSData::Direction mainStreetDirection;

 ///Latitude of the controller in micro degrees. Positive if north of

 ///equator, negative if sourth.

 long latitude;

 ///Longitude of the controller in micro degrees. Positive if east of

 ///prime meridian, negative if west.

 long longitude;

 ///Name describing the type of controller.

 string controllerType;

 ///Brief description of where this controller is. Usually a main street

 ///@ cross street specification.

 string description;

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-37 September 6th, 2011

 typedef sequence<IntersectionInfo> IntersectionInfoSeq;

 ///Summary of real-time controller status. Contains all data necessary for

 ///display of intersection status on the map.

 struct IntersectionRTSummary

 {

 ///Id of the controller.

 MCSDATA::MCSDeviceID id;

 ///Timing plan selection mode in use by the controller.

 IENTCSData::SignalControlMode controlMode;

 ///Operational state of the controller.

 IENTCSData::IntersectionSignalState signalState;

 ///Controller response state, RESPONDING if controller responded to last

 ///communication attempt, NOT_RESPONDING if not, UNKNOWN if system

 ///problem prevents communication.

 IENTCSData::ControllerResponseState responseState;

 ///If preemption in effect, cause for preemption. NO_PREEMPT if

 ///preemption not in effect.

 IENTCSData::PreemptType preemptType;

 ///A bitmask representing one or more active alarms for the controller.

 long alarms;

 ///True if main street green is active, false if inactive or unknown.

 boolean isMainStreetGreen;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-38 September 6th, 2011

 ///Overall state of communication from central to the controller,

 ///COMM_GOOD if comm mostly functioning as desired, COMM_BAD if quality

 ///of comm is too low for use by central, UNKNOWN if central problem

 ///prevents communication.

 IENTCSData::CommState commState;

 ///Numeric id of the timing plan.

 long timingPlanID;

 ///Desired cycle length in seconds.

 long desiredCycleLength;

 ///Desired offset in seconds.

 long desiredOffset;

 ///Observed offset in seconds, -1 if unknown.

 long actualOffset;

 };

 typedef sequence<IntersectionRTSummary> IntersectionRTSummarySeq;

 //Cycle and Reference counters.

 struct IntersectionRTStatus

 {

 //ID of the controller.

 MCSDATA::MCSDeviceID id;

 //Seconds since the start of current cycle.

 short cycleCounter;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-39 September 6th, 2011

 //Cycle counter for controller with the same cycle length but offset 0

 short referenceCycleCounter;

 };

 typedef sequence<IntersectionRTStatus> IntersectionRTStatusSeq;

 //Contains the ids of the phases that are currently green.

 struct PhaseStateData

 {

 //ID of the controller.

 MCSDATA::MCSDeviceID id;

 //Numeric IDs of phases that are currently green. The sequence length

 //should be equal to the number of phases that are currently active. If

 //there are none then this sequence should contain one element with a

 //value of zero.

 IEN::ShortSeq activeGreens;

 };

 typedef sequence<PhaseStateData> PhaseStateDataSeq;

 //Contains the ids of the phases that are currently displaying walk signals.

 struct PedestrianPhaseState

 {

 //Id of the controller

 MCSDATA::MCSDeviceID id;

 //Numeric IDs of phases that are currently displaying a walk signal.

 //The sequence length should be equal to the number of phases in walk.

 //If there are none then this sequence should contain one element with a

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-40 September 6th, 2011

 //value of zero.

 IEN::ShortSeq activePeds;

 };

 typedef sequence<PedestrianPhaseState> PedestrianPhaseStateSeq;

 //Phases with active vehicle calls in a controller.

 struct VehicleCallState

 {

 //ID of the controller.

 MCSDATA::MCSDeviceID id;

 //Numeric IDs of phases with active vehicle calls. The length of the

 //sequence should be the number of phases that have active vehicle

 //calls. If there are none then the length should be one with a single

 //phase value of zero.

 IEN::ByteSeq phasesWithCalls;

 };

 typedef sequence<VehicleCallState> VehicleCallStateSeq;

 //Numeric identifier and phase time in seconds for a phase.

 struct PhaseTimeDescription

 {

 //Numeric identifier for a phase.

 short phaseId;

 //Number of seconds that the phase was or should be active.

 short phaseTime;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-41 September 6th, 2011

 };

 typedef sequence<PhaseTimeDescription> PhaseTimeDescriptionSeq;

 //The green times for all the phases that were active in the controller

 //during the just completed cycle.

 struct LastCyclePhaseData

 {

 //ID of the controller.

 MCSDATA::MCSDeviceID id;

 //The total time of all the active phases;

 long totalPhaseTime;

 //Green times for phases that were active in the controller's last

 //completed cycle. The length of the sequence should be the number of

 //phases that were active in the last cycle. Each element contains the

 //ID of an active phase and the total time in seconds that the phase was

 //active in the last completed cycle. If the totalPhaseTime field is

 //zero then the length of this sequence should be zero as well.

 PhaseTimeDescriptionSeq greenTimes;

 };

 typedef sequence<LastCyclePhaseData> LastCyclePhaseDataSeq;

 //Planned phase times for active phases in the current timing plan.

 struct TpPhaseData

 {

 //Id of the controller.

 MCSDATA::MCSDeviceID id;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-42 September 6th, 2011

 //Planned phase times in seconds for the current timing plan in the

 //controller. The length of the sequence should be the number of phases

 //active in the timing plan. Each element in the sequence should

 //contain the phase ID and the planned phase time in seconds. The

 //sequence length may be zero if the controller is currently running

 //free or is in flash.

 PhaseTimeDescriptionSeq plannedPhaseTimes;

 };

 typedef sequence<TpPhaseData> TpPhaseDataSeq;

 ///Configuration information for a system detector.

 struct DetectorInfo

 {

 ///Id of the detector.

 MCSDATA::MCSDeviceID id;

 ///Averaging period in seconds used to create averaged detector data. If

 ///averaged data is not available, should be -1.

 long averagingPeriod;

 ///Usage of the detector in the traffic system.

 IENTCSData::DetectorClass detectorClass;

 /// Vehicle detection technique used by the detector.

 IENTCSData::DetectorType detectorType;

 /// Direction of traffic flow past the detector.

 IENTCSData::Direction detectorDirection;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-43 September 6th, 2011

 //Lane number for traffic passing the detector. The innermost lane

 //on the roadway is lane 1, the next lane to the right is lane 2, etc.

 octet laneNumber;

 //Name of the roadway that contains the detector.

 string roadName;

 //Weighting factor(k) for volume+weighted occupancy calculations.

 float weightingFactor;

 };

 typedef sequence<DetectorInfo> DetectorInfoSeq;

 /// Most recent state information from the detector. If the status field

 /// is any value other than DETECTOR_OPERATIONAL the volume, occupancy,

 /// and speed fields should not be used.

 struct DetectorState

 {

 ///Id of the detector.

 MCSDATA::MCSDeviceID id;

 ///The time of the updload in HHMMSS format: hours (0-23 for midnight to

 ///11 p.m.) * 10,000 | minutes (0-59) * 100 | seconds (0-59)

 IEN::HHMMSS lastUpdateTime;

 ///The date of the update in YYYYMMDD format: year (AD) * 10,0000 |

 ///month (1-12) | day of month (1-31).

 IEN::YYYYMMDD lastUpdateDate;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-44 September 6th, 2011

 ///Volume reported by the detector in vehicles per hour.

 long volume;

 /// Average volume (-1 if not available).

 long avgVolume;

 ///Volume in veh. per hour + weighted occupancy (-1 if not available).

 long volumePlusWeightingFactor;

 ///Avg volume + weighted occupancy. (-1 if not available).

 long avgVolumePlusWeightingFactor;

 ///Latest known status of the detector. If the field is a value other

 ///than DETECTOR_OPERATIONAL then the volume, occupancy, and speed

 ///fields should be set to -1.

 IENTCSData::DetectorStatus status;

 ///Speed in miles per hour. -1 if not available.

 short speed;

 ///Average speed over averaging period. -1 if not available.

 short avgSpeed;

 ///Occupancy percentage.

 short occupancy;

 ///Average occupancy. -1 if not available.

 short avgOccupancy;

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-45 September 6th, 2011

 typedef sequence<DetectorState> DetectorStateSeq;

 struct DetectorStationInfo

 {

 //32 bit device id

 MCSDATA::MCSDeviceID id;

 //

 long freewayId;

 //Latitude

 long latitude;

 //Longitude

 long longitude;

 //Post Mile Marker

 float postMileMarker;

 //Direction of traffic flow

 IENTCSData::Direction detectorDirection;

 //Number of lanes

 octet numberOfLanes;

 //Name of roadway

 string roadwayName;

 //Name of cross street

 string crossStreet;

 //A description of this station

 string description;

 //The source of the Update PeMS or RIITS

 string source;

 };

 typedef sequence<DetectorStationInfo> DetectorStationInfoSeq;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-46 September 6th, 2011

 struct DetectorStationState

 {

 //32 bit id of the device

 MCSDATA::MCSDeviceID id;

 //Status of the detector station. (OK or failed)

 IENTCSData::DetectorStatus status;

 //Volume

 float volume;

 //Occupancy

 float occupancy;

 //Speed

 float speed;

 //HOV Speed

 float hovSpeed;

 //The source of the Update either PeMS or RIITS

 string source;

 };

 typedef sequence<DetectorStationState> DetectorStationStateSeq;

 /// Configuration information for a section.

 struct SectionInfo

 {

 //ID of section.

 MCSDATA::MCSDeviceID id;

 //The IDs of controllers that belong to this section.

 IEN::LongSeq intersections;

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-47 September 6th, 2011

 typedef sequence<SectionInfo> SectionInfoSeq;

 ///Current state of the section.

 struct SectionState

 {

 //Id of the Section.

 MCSDATA::MCSDeviceID id;

 ///Control mode used to select the timing plans of controllers following

 ///the section.

 IENTCSData::SignalControlMode sectionControlMode;

 //Timing plan of the controllers that follow this Section.

 short planID;

 };

 typedef sequence<SectionState> SectionStateSeq;

 /// Device configuration data. Contains IntersectionInfo, DetectorInfo,

 /// and SectionInfo sequences for a given site and system.

 struct DeviceConfigGroup

 {

 /// Time update was created by the CDI.

 IEN::HHMMSS timeOfDistribution;

 /// Configuration information for intersections.

 IntersectionInfoSeq intersections;

 /// Configuration information for detectors.

 DetectorInfoSeq detectors;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-48 September 6th, 2011

 /// Configuration information for sections.

 SectionInfoSeq sections;

 /// Configuration information for detector stations

 DetectorStationInfoSeq stations;

 };

 typedef sequence<DeviceConfigGroup> DeviceConfigBatch;

 /// Slowly changing device state data. Contains the IntersectionRTSummary,

 /// DetectorState, and SectionState sequences for a given site and system.

 struct DeviceStateGroup

 {

 /// Time update was created by the CDI.

 IEN::HHMMSS timeOfDistribution;

 /// Intersection summary information (suitable for map).

 IntersectionRTSummarySeq intersectionStates;

 /// Detector state information (last set of uploaded data).

 DetectorStateSeq detectorStates;

 /// Section state information (control mode and timing plan in use).

 SectionStateSeq sectionStates;

 /// Detector Station states

 DetectorStationStateSeq stationStates;

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-49 September 6th, 2011

 typedef sequence<DeviceStateGroup> DeviceStateBatch;

 /// Intersection data for a given site and system, mostly rapidly changing.

 /// These data types are only delivered when a user interface program

 /// subscribes to them.

 struct RealTimeUpdateGroup

 {

 /// Time update was created by the CDI.

 IEN::HHMMSS timeOfDistribution;

 /// Intersection cycle counters and master cycle counters.

 IntersectionRTStatusSeq intersectionRTStatuses;

 /// Active green phases for intersections.

 PhaseStateDataSeq intersectionPhaseStates;

 /// Active pedestrian walk signals for intersections.

 PedestrianPhaseStateSeq pedestrianPhaseStates;

 /// Active vehicle calls for intersections.

 VehicleCallStateSeq vehicleCallStates;

 /// Phase times from completed cycles for intersections.

 LastCyclePhaseDataSeq lastCycles;

 /// Planned phase times for intersections.

 TpPhaseDataSeq maximumPhaseTimes;

 };

 typedef sequence<RealTimeUpdateGroup> RealTimeUpdateBatch;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-50 September 6th, 2011

 ///Contains Info,State, Realtime update batches.

 struct SiteUpdate

 {

 /// Display ID of site of origin for the update. Filled in by the

 /// site server, not the CDI.

 short site;

 /// Display ID of system of origin for the update. Filled in by the

 /// site server, not the CDI.

 short system;

 /// Size of the data contained in the update in bytes. Filled in by the

 /// site server after getting the update from the CDI.

 long size_of_data;

 /// Requested configuration information for devices on the TCS.

 DeviceConfigGroup configUpdates;

 /// Requested device state information for the TCS.

 DeviceStateGroup stateUpdates;

 /// Requested intersection real-time state information for the TCS.

 RealTimeUpdateGroup realTimeUpdates;

 };

 typedef sequence<SiteUpdate> SiteUpdateBatch;

 /// Event types returned for a given device type

 struct MCSDeviceDataTypes

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-51 September 6th, 2011

 {

 /// Type of device that the CDI supports

 IENRTData::DeviceType type;

 /// Types of events that a site server may request for the device type.

 MCSDATA::EventTypeList eventTypes;

 };

 /// List of data types for all supported devices.

 typedef sequence<MCSDeviceDataTypes> MCSDeviceDataTypeList;

 ///Specifies a MCSDevice and the types of data needed and if should look for

 ///changed data only.

 struct MCSDeviceRequest

 {

 /// Device type and 32 bit device ID.

 MCSDATA::MCSDevice device;

 /// List of event types to request for the device.

 MCSDATA::EventTypeList eventTypes;

 /// True if requesting changes since the last time the device's data

 /// was requested, false if the CDI should return all data for the

 /// device regardless of what data was last reported by the CDI.

 boolean changedOnly;

 };

 /// List of MCSDeviceRequest elements

 typedef sequence<MCSDeviceRequest> MCSDeviceRequestList;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-52 September 6th, 2011

 /// Status of a failed data request. Used to report failed data requests to

 /// site server.

 enum ReasonForRequestFailure

 {

 /// requested event type not supported

 EVENT_TYPE_NOT_SUPPORTED,

 /// access to data for device denied

 ACCESS_DENIED,

 /// requested device does not exist

 NO_DEVICE,

 /// other unspecified failure

 OTHER

 };

 /// Report the failure of a request for a given event type from a given

 /// device.

 struct RequestFailureStatus

 {

 /// Device for which request failed.

 MCSDATA::MCSDevice device;

 /// Type of data requested.

 IENTCSData::IEN_EventType ien_eventType;

 /// Reason data request failed.

 ReasonForRequestFailure reason;

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-53 September 6th, 2011

 typedef sequence<RequestFailureStatus> RequestFailureStatusSeq;

 /// Data access interface for new MCS CDI programs. Replaces the

 /// data access methods in DataAccessor, but not the configuration/lifecycle

 /// methods and properties.

 interface MCSDataAccessor : TCSData::DataAccessor {

 /// Get the event types supported for all device types

 /// for which this CDI returns data.

 /// @return supported data types for all supported devices

 MCSDeviceDataTypeList getDeviceEventTypes();

 ///Get a list of devices accessible to the IEN of the given types.

 ///

 ///@param types device types in which the caller is interested

 ///

 ///@return The 32 bit version of the devices currently configured to

 /// report to the IEN.

 MCSDATA::MCSDeviceList getAvailableDevices32(

 in TCS::DeviceTypeList types);

 /// Request TCS data by device and event type from the CDI. The CDI

 /// should return all the data that it can in the set_update structure.

 /// For those requests that the CDI cannot satisfy, it should report the

 /// device ID, type and reason the request failed in the failed_requests

 /// sequence.

 ///

 /// @param device_requests List of devices and data types requested

 /// @param site_update Requested TCS data for those devices and

 /// event types that the CDI can satisfy. The

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-54 September 6th, 2011

 /// site server fills in the site, system, and

 /// size_of_data fields. The CDI fills in the

 /// configUpdates, stateUpdates, and

 /// realTimeUpdates sequences. If there is no

 /// data to report, the CDI may set the length

 /// of these sequences to zero.

 /// No data should be reported for failed

 /// requests or for change-only requests for

 /// which the device's configuration or state

 /// hasn't changed since the last report.

 /// The CDI should report the reasons for

 /// failed requests in the failed_requests

 /// parameter.

 /// @param failed_requests Reasons for failed requests. Should have

 /// one element for each request in

 /// device_requests for which there is an

 /// exceptional failure. No data reported to

 /// change-only requests is not considered a

 /// failure and should not be reported here.

 void getDeviceUpdate32(in MCSDeviceRequestList device_requests,

 inout SiteUpdate site_update,

 out RequestFailureStatusSeq failed_requests)

 raises (TCS::SystemStatusException,TCS::Error);

 };

};

#endif

//---

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-55 September 6th, 2011

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//---

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-56 September 6th, 2011

5.1.7 Tcscommand.idl
// --

// Copyright 2001, 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

// --

// $Id: tcscommand.idl,v 1.5 2009/02/12 16:49:14 mayoj Exp $

//

// CORBA interface to TCS commands.

// --

#ifndef TCSCOMMAND_IDL

#define TCSCOMMAND_IDL

#include "tcs.idl"

#include "IENRTData.idl"

#pragma prefix "transcore.com"

module TCSCommand

{

 /// Major version, minor version, and revision of this IDL interface

 const short majorVersion = 2;

 const short minorVersion = 0;

 const short revision = 1;

 /// Thrown when a plan number is specified that is not

 /// supported by one or more of the devices in the

 /// command.

 exception InvalidPlanNumber

 {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-57 September 6th, 2011

 short planNumber;

 TCS::DeviceList devices;

 };

 /// Thrown when a mode is specified that is not supported

 /// by one or more of the devices in the request.

 exception InvalidMode

 {

 TCS::Mode invMode;

 TCS::DeviceList devices;

 };

 /// Thrown when the TCS interface is not accepting commands

 /// (because it has been manually disabled)

 exception CommandsNotAccepted

 {

 string reason;

 };

 /// Interface that allows clients to send commands to TCS

 interface CommandAccessor: TCS::ConfigurationAccessor

 {

 /// Text passed to DataAccessorFactory::CreateDataAccessor()

 /// to create this instance.

 readonly attribute string clientName;

 /// Client calls this method when finished with this CommandAcceptor.

 /// Releases all resources associated with this instance.

 void destroy();

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-58 September 6th, 2011

 /// Change CDI plan number

 ///

 /// @param devices List of devices for which to change the plan

 /// @param planNumber New plan number for the requested devices

 void setCDIPlan(

 in TCS::DeviceList devices,

 in short planNumber

) raises (

 CommandsNotAccepted,

 InvalidPlanNumber,

 TCS::UnknownDevices,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Change operational mode of specified devices.

 ///

 /// @param devices List of devices for which to change the mode

 /// @param newMode New operational mode for the devices on the list

 void changeMode(

 in TCS::DeviceList devices,

 in TCS::Mode newMode

) raises (

 CommandsNotAccepted,

 InvalidMode,

 TCS::UnknownDevices,

 TCS::SystemStatusException,

 TCS::Error

);

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-59 September 6th, 2011

 /// Release IEN control of a list of TCS devices

 ///

 /// @param devices List of devices for which to release IEN control

 void releaseControl(

 in TCS::DeviceList devices

) raises (

 TCS::UnknownDevices,

 TCS::SystemStatusException,

 TCS::Error

);

 };

 /// Interface for creating instances of CommandAcceptor

 interface CommandAccessorFactory

 {

 /// Create an instance of DataAccessor.

 ///

 /// @param clientName Text identifying the user

 /// of this interface. For

 /// informational and diagnostic

 /// purposes.

 ///

 /// @param option Provides access to special

 /// functionality (generally for

 /// debugging or testing purposes).

 /// Always pass 0 unless you know

 /// what you're doing.

 CommandAccessor createCommandAccessor(

 in string clientName,

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-60 September 6th, 2011

 in long option

) raises (TCS::Error);

 };

};

#endif

//---

// Copyright 2009 County of Los Angeles. All Rights Reserved.

//---

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-61 September 6th, 2011

5.1.8 Mcscommand.idl
// --

// Copyright 2008, 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

// --

// $Id: mcscommand.idl,v 1.8 2009/05/18 18:20:02 mayoj Exp $//

// New CORBA interface to TCS commands for MCS. Adds flash method to the

// existing CommandAccessor interface.

// --

#ifndef MCSCOMMAND_IDL

#define MCSCOMMAND_IDL

#include "tcscommand.idl"

#include "mcsdata.idl"

module MCSCommand

{

 /// Major version, minor version, and revision of this IDL interface

 const short majorVersion = 3;

 const short minorVersion = 0;

 const short revision = 0;

 /// Result of sending a command to one device.

 struct CommandResult {

 /// Type and ID of commanded device.

 MCSDATA::MCSDevice device;

 /// True if command successful, false if not.

 boolean isSuccessful;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-62 September 6th, 2011

 /// Free-form string for reporting the reason the command failed.

 string message;

 };

 typedef sequence<CommandResult> CommandResultSequence;

 /// Thrown if devices are specified that

 /// are unknown to TCS or not fully configured

 exception MCSUnknownDevices

 {

 MCSDATA::MCSDeviceList unknowns;

 };

 /// Thrown when a plan number is specified that is not

 /// supported by one or more of the devices in the

 /// command.

 exception MCSInvalidPlanNumber

 {

 short planNumber;

 MCSDATA::MCSDeviceList devices;

 };

 /// Thrown when a mode is specified that is not supported

 /// by one or more of the devices in the request.

 exception MCSInvalidMode

 {

 TCS::Mode invMode;

 MCSDATA::MCSDeviceList devices;

 };

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-63 September 6th, 2011

 /// Thrown when a command is not supported by the CDI for one or more of the

 /// requested devices.

 exception MCSCommandNotSupported

 {

 MCSDATA::MCSDeviceList devices;

 };

 /// Enables IEN programs to send commands to a traffic control system.

 interface MCSCommandAccessor: TCSCommand::CommandAccessor

 {

 ///Get a list of devices of the given types to which the IEN may give

 ///commands.

 ///

 ///@param types device types in which the caller is interested

 ///

 ///@return The 32 bit version of the devices that may currently accept

 /// commands from the IEN

 MCSDATA::MCSDeviceList getAvailableDevices32(

 in TCS::DeviceTypeList types);

 /// Change CDI plan number using 32-bit device IDs.

 ///

 /// @param devices List of devices for which to change the plan

 /// @param planNumber New plan number for the requested devices

 /// @return Results for command to each device on list

 /// @throws CommandsNotAccepted if

 CommandResultSequence setCDIPlan32(

 in MCSDATA::MCSDeviceList devices,

 in short planNumber

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-64 September 6th, 2011

) raises (

 TCSCommand::CommandsNotAccepted,

 MCSInvalidPlanNumber,

 MCSUnknownDevices,

 MCSCommandNotSupported,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Change operational mode of specified devices using 32-bit device

 /// IDs.

 ///

 /// @param devices List of devices for which to change the mode with

 /// 32-bit device IDs.

 /// @param newMode New operational mode for the devices on the list

 /// @return Results for command to each device on list

 CommandResultSequence changeMode32(

 in MCSDATA::MCSDeviceList devices,

 in TCS::Mode newMode

) raises (

 TCSCommand::CommandsNotAccepted,

 MCSInvalidMode,

 MCSUnknownDevices,

 MCSCommandNotSupported,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Release IEN control of a list of TCS devices using 32-bit device

 /// IDs.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-65 September 6th, 2011

 ///

 /// @param devices List of devices for which to release IEN control

 /// with 32-bit device IDs

 /// @return Results for command to each device on list

 CommandResultSequence releaseControl32(

 in MCSDATA::MCSDeviceList devices

) raises (

 MCSUnknownDevices,

 MCSCommandNotSupported,

 TCS::SystemStatusException,

 TCS::Error

);

 /// Put MCS devices into flashing operation. Remove from flash by

 /// calling releaseControl32.

 ///

 /// @param devices List of devices to put into flash, with 32-bit

 /// device IDs.

 /// @return Results for flash command to each device on list

 CommandResultSequence flash32(

 in MCSDATA::MCSDeviceList devices

) raises (

 TCSCommand::CommandsNotAccepted,

 MCSCommandNotSupported,

 MCSUnknownDevices,

 TCS::SystemStatusException,

 TCS::Error

); };

};

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-66 September 6th, 2011

#endif

// --

// Copyright 2008, 2009 County of Los Angeles. All Rights Reserved.

//

// Developed by TransCore

// --

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-67 September 6th, 2011

5.2 APPENDIX B: EXAMPLE CDI MAIN CLASS
// ---

// Copyright (c) 2009 Transcore ITS, LLC. All rights Reserved.

//

// PROPRIETARY

//

// THIS SOURCE CODE IS THE PROPERY OF TRANSCORE. IT MAY BE USED BY

// RECIPIENT ONLY FOR THE PURPOSE FOR WHICH IT WAS TRANSMITTED AND MUST

// BE RETURNED UPON REQUEST OR WHEN NO NEEDED BY RECIPIENT. IT MAY NOT

// BE COPIED OR COMMUNICATED WITHOUT THE WRITTEN CONSENT OF TRANSCORE.

// --

// File : $Id: IEN_CDI.java,v 1.23 2009/03/18 20:18:41 mayoj Exp $

// Author : welchj

// --

package com.transcore.tcs.external.ien;

import java.util.*;

import org.omg.CORBA.ORB;

import org.omg.CORBA.SystemException;

import org.omg.CORBA.ORBPackage.InvalidName;

import org.omg.CosNaming.*;

import org.omg.PortableServer.*;

import org.omg.PortableServer.POAManagerPackage.AdapterInactive;

import org.omg.PortableServer.POAPackage.*;

/**

 * Main class for example IEN CDI. Sets up the main CDI thread

 * and processes TCS data changes and command requests.

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-68 September 6th, 2011

 *

 * @author Jay Welch

 * @author $Author: mayoj $

 * @version $Revision: 1.23 $

 */

public class IEN_CDI implements Runnable {

 // How long to sleep between checking for ORB traffic, in milliseconds.

 private static final int IEN_Waiting_Period = 500;

 private org.omg.CORBA.Object data_factory_ = null;

 private org.omg.CORBA.Object command_factory_ = null;

 private TCS_CommandAccessorFactory tcs_command_factory_ = null;

 private TCS_DataAccessorFactory tcs_data_factory_ = null;

 private static final String site_and_system_id_ = "1:1";

 private static org.jacorb.orb.ORB orb = null;

 private static POA poa;

 private static final String siteServerName = "siteServer";

 private static final String orbArgs[] = {

 "-ORBInitRef",

 "NameService=corbaloc::" + siteServerName + ":14444/NameService"

 };

 /**

 * Constructor. Creates the CORBA data accessor factory and command accessor

 * factory objects.

 *

 * @param system_interface

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-69 September 6th, 2011

 * ExternalSystemInterfaceBean Contains the properties that will

 * be needed to have the IEN system contact this TCS for updates

 * and command execution.

 *

 */

 public IEN_CDI() {

 tcs_command_factory_ = new TCS_CommandAccessorFactory(getPoa());

 tcs_data_factory_ = new TCS_DataAccessorFactory(getPoa());

 }

 /**

 * Get the CORBA ORB object for basic ORB functions.

 *

 * @return ORB object for basic ORB functions

 */

 public ORB getOrb() {

 if (orb == null) {

 orb = (org.jacorb.orb.ORB)ORB.init(orbArgs, (Properties) null);

 }

 return orb;

 }

 /**

 * Get the CORBA portable object adapter (POA) for server objects.

 *

 * @return POA object for use in creating server objects

 */

 public POA getPoa() {

 if (poa == null)

 {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-70 September 6th, 2011

 try

 {

 POA tmpPoa;

 tmpPoa = POAHelper.narrow(getOrb().resolve_initial_references(

 "RootPOA"));

 tmpPoa.the_POAManager().activate();

 poa = tmpPoa;

 }

 catch (InvalidName ex)

 {

 // TODO Auto-generated catch block

 ex.printStackTrace();

 }

 catch (AdapterInactive ex)

 {

 // TODO Auto-generated catch block

 ex.printStackTrace();

 }

 }

 return poa;

 }

 /**

 * Main communication thread for the IEN CDI thread. Activates the data and

 * command accessor factories, then enters the outer loop.

 *

 * The outer loop registers the data and command accessor factories in the

 * name service & logs success or failure. If the names are registered

 * correctly, enters the inner loop.

 *

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-71 September 6th, 2011

 * The performWork method checks to see that the naming service is still

 * available, then waits for ORB processing. When performWork is

 * interrupted or the naming service becomes inaccessible, returns to the

 * outer loop to re-register the factory object's names in the naming

 * service.

 *

 * @see java.lang.Runnable#run()

 */

 public void run() {

 System.out.printf("%s %s","ien", "IEN Component has started running.");

 NamingContextExt naming_service = null;

 try {

 data_factory_ = getPoa()

 .servant_to_reference(tcs_data_factory_);

 command_factory_ = getPoa().servant_to_reference(

 tcs_command_factory_);

 while (!Thread.currentThread().isInterrupted()) {

 naming_service = resolveNamingContext();

 System.out.printf("%s %s","ien", "IEN NamingContext resolved.");

 if (bindFactories(naming_service)) {

 System.out.printf("%s %s", "Informational",

 "All factories published. Waiting for IEN I/O.");

 System.out.printf("%s %s", "ien",

 "IEN Factories bound to the appropriate naming service.");

 performWork(naming_service);

 tcs_data_factory_.deactivateAccessors();

 tcs_command_factory_.deactivateAccessors();

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-72 September 6th, 2011

 } else {

 Thread.sleep(5000);

 }

 }

 } catch (InterruptedException e) {

 // Just exit from the loop

 } catch (ServantNotActive e) {

 e.printStackTrace();

 } catch (WrongPolicy e) {

 e.printStackTrace();

 }

 cleanup(naming_service);

 System.out.printf("%s %s","ien", "IEN Component has stopped.");

 }

 /**

 * Wait for ORB operations until loop interrupted or naming service

 * reference becomes invalid (indicating the naming service has been

 * restarted).

 *

 * @param naming_service reference to CORBA naming service

 *

 * @throws InterruptedException If thread should terminate

 */

 private void performWork(NamingContextExt naming_service)

 throws InterruptedException

 {

 ORB orb = getOrb();

 try {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-73 September 6th, 2011

 while (!Thread.currentThread().isInterrupted()

 && !naming_service._non_existent()) {

 if (orb.work_pending()) {

 orb.perform_work();

 }

 Thread.sleep(IEN_Waiting_Period);

 }

 } catch (SystemException e) {

 System.out.printf("%s %s: %s", "Error",

 "Exception occured while running the IEN interface",

 e.getLocalizedMessage());

 e.printStackTrace();

 }

 }

 /**

 * Attempts to find the naming service where the command and data

 * factory names are to be published. If not found, waits 10 seconds and

 * then tries again.

 *

 * @return NamingContextExt The naming context where the command and data

 * accessor factories are to be published.

 *

 * @throws InterruptedException if the name service is not accessible or

 * another thread interrupts this one.

 */

 private NamingContextExt resolveNamingContext() throws InterruptedException {

 System.out.printf("%s %s","ien",

 "Resolving the IEN Site servers NameService");

 NamingContextExt naming_service = null;

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-74 September 6th, 2011

 String error = null;

 int total_tries = 0;

 ORB orb = getOrb();

 while (!Thread.currentThread().isInterrupted()

 && naming_service == null) {

 String name_spec = "corbaloc:iiop:"

 + siteServerName + ":14444/NameService";

 total_tries += 1;

 try {

 System.out.printf("%s %s %s",

 "ien",

 "Resolving nameserver for the site server at ",

 siteServerName);

 org.omg.CORBA.Object obj = orb.string_to_object(name_spec);

 if (obj != null) {

 System.out.printf("%s %s",

 "ien",

 "ORB has resolved the initial reference "

 + name_spec + " attempting narrow");

 naming_service = NamingContextExtHelper.narrow(obj);

 } else {

 error = "Unable to get initial reference to Name Service using "

 + name_spec;

 }

 } catch (SystemException e) {

 error = "Unable to resolve naming service: "

 + e.getLocalizedMessage();

 } catch (Exception e) {

 error = "Unable to resolve naming service: "

 + e.getLocalizedMessage();

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-75 September 6th, 2011

 }

 if (naming_service == null) {

 if (total_tries == 1 || total_tries % 600 == 0) {

 System.out.printf("%s %s", "Error",

 "Unable to intialize CORBA Components.");

 }

 if (error != null) {

 System.out.printf("%s %s","ien", error);

 } else {

 System.out.printf("%s %s",

 "ien",

 "Unable to determine why the name service could not be "

 + "resolved.");

 }

 error = null;

 Thread.sleep(10000);

 }

 }

 if (naming_service != null) {

 System.out.printf("%s %s","ien", "Obtained naming service");

 } else {

 throw new InterruptedException();

 }

 return (naming_service);

 }

 /**

 * Binds the factories to the name service.

 *

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-76 September 6th, 2011

 * @param naming_service

 * NamingContextExt The naming context to bind to.

 *

 * @return boolean True indicates that the data and command interfaces have

 * been bound to the given naming context false indicates that there

 * was some problem binding the components to the name service

 */

 private boolean bindFactories(NamingContextExt naming_service) {

 String error = null;

 boolean bound = false;

 try {

 String just_site_id = site_and_system_id_ ;

 int sys_ndx = just_site_id.indexOf(":");

 if (sys_ndx != -1) {

 just_site_id = just_site_id.substring(0, sys_ndx);

 }

 naming_service.rebind(new NameComponent[] { new NameComponent(

 "TCSCDIData" + site_and_system_id_, "Site"

 + just_site_id) }, data_factory_);

 naming_service.rebind(new NameComponent[] { new NameComponent(

 "TCSCDICmd" + site_and_system_id_, "Site"

 + just_site_id) }, command_factory_);

 bound = true;

 } catch (Exception e) {

 error = "Unable to bind factories Exception: "

 + e.getClass().getCanonicalName() + " message "

 + e.getLocalizedMessage();

 }

 if (error != null) {

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-77 September 6th, 2011

 System.out.printf("%s %s","ien", error);

 }

 return (bound);

 }

 /**

 * Clean up just before the CDI loop exits

 *

 * @param naming_service CORBA naming service from which to remove the

 * CDI's names

 */

 private void cleanup(NamingContextExt naming_service)

 {

 if (data_factory_ != null) {

 tcs_data_factory_.deactivateAccessors();

 try {

 getPoa().deactivate_object(

 getPoa().reference_to_id(data_factory_));

 } catch (Exception e) {

 }

 }

 if (command_factory_ != null) {

 tcs_command_factory_.deactivateAccessors();

 try {

 getPoa().deactivate_object(

 getPoa().reference_to_id(command_factory_));

 } catch (Exception e) {

 }

 }

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-78 September 6th, 2011

 if (naming_service != null) {

 unbindFactories(naming_service);

 }

 }

 /**

 * Unbinds the factories from the naming service.

 *

 * @param naming_service

 * NamingContextExt The naming context to unbind from.

 *

 * @return boolean True indicates that the data and command interfaces have

 * been unbound from the given naming context false indicates that

 * there was some problem unbinding the components from the name

 * service

 */

 private boolean unbindFactories(NamingContextExt naming_service) {

 String error = null;

 boolean unbound = false;

 try {

 naming_service.unbind(new NameComponent[] { new NameComponent(

 "TCSCDIData" + site_and_system_id_, "Site"

 + site_and_system_id_) });

 naming_service.unbind(new NameComponent[] { new NameComponent(

 "TCSCDICmd" + site_and_system_id_, "Site"

 + site_and_system_id_) });

 unbound = true;

 } catch (Exception e) {

 error = "Unable to unbind the factories from the naming service: "

 + e.getClass().getCanonicalName() + " message "

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-79 September 6th, 2011

 + e.getLocalizedMessage();

 }

 if (error != null) {

 System.out.printf("%s %s","ien", error);

 }

 return (unbound);

 }

}

TCS CDI Implementation Recommendations – Final, Revision 6

LA County IEN Page 5-80 September 6th, 2011

5.3 APPENDIX C: DIAGNOSTIC SETTINGS IN THE SITE SERVER PROGRAM

The Site Server program can be configured to write diagnostic output to a log file, which CDI
Developers may find helpful when diagnosing problems with CDI programs. The configuration
file for the Site Server (usually site.properties) contains an ien.loglevels property similar to the
following:
ien.loglevels = info,warning,siteserver,cdihandler,sitedistributor,

This property governs the diagnostic output that the Site Server writes for data that it receives
from a CDI. To change the quantity of CDI communication that the Site Server prints out,
change the list of log levels defined in the value of the property. Multiple log levels can be set
by naming them in a comma-separated list, as shown above. The Site Server should detect the
changed settings shortly after the changes are saved to the configuration file and begin printing
out the requested diagnostic data.

Table 5-1 below lists the diagnostic levels available with the Site Server (note that the level
names are not case-sensitive):

Table 5-1: Diagnostic Levels for the Site Server

DIAGNOSTIC
LEVEL EXPLANATION

Fatal An error that caused the Site Server to terminate. Cannot be disabled.

Error Messages about recoverable errors that won’t stop the Site Server. Cannot be
disabled.

Info Informational messages that are nice to know but not terribly important.

Warning Warnings of possible problems.

Siteserver Messages about naming service interactions and workstations connecting to and
disconnecting from the Site Server.

CDIHandler Interactions with Command/Data Interface (CDI) programs.

SiteDistributor Distribution of data from the regional server to workstations.

UpdateCycle Decisions about when to request change-only data vs. all data for devices from a
CDI.

TopicManager Creation, renewal, and termination of subscriptions.

TopicFilter Transmission of real-time data to other sites when subscriptions exist.

SiteOutgoing Transmission of data to the Regional Server and to workstation data services.

SiteIncoming Distribution of data from the regional server to workstations.

Changes Reports on the IDs of devices for which data has changed.

Command Problems executing commands.

UpdateFailure Failures getting data from version 3 CDIs.

	1. INTRODUCTION
	1.1 PURPOSE OF THE DOCUMENT
	1.2 CDI INTERFACE HISTORY
	1.3 INTENDED AUDIENCE
	1.4 ASSUMPTIONS

	2. CHANGING FROM VERSION 2 TO VERSION 3
	2.1 NEW INTERFACES
	2.1.1 Explicit Interface Definition in IDL
	2.1.2 Increased Device Identifier Size
	2.1.3 Additional Intersection Configuration Data
	2.1.4 Individual Device Error Return Codes

	2.2 MODIFYING AN EXISTING CDI PROGRAM
	2.2.1 Changes to DataAccessorFactory and CommandAccessorFactory Objects
	2.2.2 Changing the DataAccessor Object to Implement MCSDataAccessor
	2.2.3 Changing the CommandAccessor Object to Implement MCSCommandAccessor

	3. TCS CDI INTERFACE REQUIREMENTS
	3.1 CORBA INTERFACES
	3.1.1 IEN.idl
	3.1.2 IENRTData.idl
	3.1.3 TCS.idl
	3.1.4 IENTCSData.idl
	3.1.5.2.1 clientName Attribute
	3.1.5.2.2 destroy Method
	3.1.5.2.3 getDeviceList Method
	3.1.5.2.4 deviceDataTypes Method
	3.1.5.2.5 getDeviceEventDataList Method
	3.1.5.3 DataAccessorFactory Interface

	3.1.6 MCSData.idl
	3.1.6.1 MCSDeviceID typedef
	3.1.6.2 MCSDeviceIDList Sequence
	3.1.6.3 MCSDevice Structure
	3.1.6.4 MCSDeviceList Sequence
	3.1.6.5 EventTypeList Sequence

	3.1.7 MCSDataInterface.idl
	3.1.7.1 CDI Version 3 Interface Version Number Constants
	3.1.7.2 Device Event Structures
	3.1.7.2.1 IntersectionInfo Structure
	3.1.7.2.2 IntersectionRTSummary Structure
	3.1.7.2.3 IntersectionRTStatus Structure
	3.1.7.2.4 PhaseStateData Structure
	3.1.7.2.5 PedestrianPhaseState Structure
	3.1.7.2.6 VehicleCallState Structure
	3.1.7.2.7 PhaseTime Structure
	3.1.7.2.8 LastCyclePhaseData Structure
	3.1.7.2.9 TpPhaseData Structure
	3.1.7.2.10 DetectorInfo Structure
	3.1.7.2.11 DetectorState Structure
	3.1.7.2.12 SectionInfo Structure
	3.1.7.2.13 SectionState Structure
	3.1.7.2.14 DetectorStationInfo and DetectorStationState Structures

	3.1.7.3 SiteUpdate Component Structures
	3.1.7.3.1 DeviceConfigGroup Structure
	3.1.7.3.2 DeviceStateGroup Structure
	3.1.7.3.3 RealTimeUpdateGroup Structure

	3.1.7.4 SiteUpdate Structure
	3.1.7.5 Structures and Sequences Used in MCSDataAccessor Methods
	3.1.7.5.1 MCSDeviceDataTypes Structure
	3.1.7.5.2 MCSDeviceDataTypeList Sequence
	3.1.7.5.3 MCSDeviceRequest Structure
	3.1.7.5.4 MCSDeviceRequestList Sequence
	3.1.7.5.5 ReasonForRequestFailure Enumeration
	3.1.7.5.6 RequestFailureStatus Structure
	3.1.7.5.7 RequestFailureStatusSeq Sequence

	3.1.7.6 MCSDataAccessor Interface

	3.1.8 TCSCommand.idl
	3.1.8.1 CommandsNotAccepted Exception
	3.1.8.2 CommandAccessor Interface
	3.1.8.3 CommandAccessorFactory Interface

	3.1.9 MCSCommand.idl
	3.1.9.2 CommandResult Structure
	3.1.9.4.1 setCDIPlan32 Method
	3.1.9.4.2 changeMode32 Method
	3.1.9.4.3 releaseControl 32Method
	3.1.9.4.4 flash32 Method

	3.2 TCS CDI PERFORMANCE REQUIREMENTS
	3.2.1 Data Access Requirements
	3.2.2 Data Reporting Requirements
	3.2.2.1 IEN_INTERSECTIONINFO
	3.2.2.2 IEN_INTERSECTIONRTSTATUS
	3.2.2.3 IEN_INTERSECTIONRTSUMMARY
	3.2.2.4 IEN_PHASE_STATEDATA
	3.2.2.5 IEN_PEDPHASE_STATEDATA
	3.2.2.6 IEN_VEHCALL_STATEDATA

	3.2.3 Command Execution Requirements

	3.3 USAGE OF THE CORBA NAMING SERVICE
	3.3.1 IEN Naming Service Location
	3.3.2 Published Names

	3.4 FIREWALL CONSIDERATIONS

	4. EXAMPLE IMPLEMENTATION
	4.1 CORBA ORB USED
	4.2 IMPLEMENTATION ENVIRONMENT
	4.3 CONFIGURATION DATA
	4.4 IMPORTANT CDI METHODS
	4.4.1 CDI Constructor
	4.4.3 resolveNamingContext method
	4.4.4 bindFactories Method
	4.4.5 performWork Method
	4.4.6 cleanup method
	4.4.7 unbindFactories method

	5. APPENDICES
	5.1 APPENDIX A: TCS CDI CORBA IDL FILES
	5.1.1 IEN.idl
	5.1.2 IENRTData.idl
	5.1.3 TCS.idl
	5.1.4 IENTCSData.idl
	5.1.5 MCSData.idl
	5.1.6 MCSDataInterface.idl
	5.1.7 Tcscommand.idl
	5.1.8 Mcscommand.idl

	5.2 APPENDIX B: EXAMPLE CDI MAIN CLASS
	5.3 APPENDIX C: DIAGNOSTIC SETTINGS IN THE SITE SERVER PROGRAM

	Cover Rev 6 (2nd submittal).pdf
	September 6th, 2011
	INFORMATION EXCHANGE NETWORK

	Recommendations
	for the implementation of
	new Traffic Control System
	Command/Data Interface Programs

