

Waste to Hydrogen (Biological Pathways)

February 16, 2023

LA County Integrated Waste Management Task Force Alternative Technology Advisory Subcommittee (ATAS)

GHD **Hydrogen Production Pathways**

Alternative to Natural Gas

GHD Waste to Hydrogen Pathways Overview

1	Via Biogas (Digester Gas or Landfill Gas)	 RNG SMR Methane Pyrolysis Biogas Reforming 	\rightarrow \rightarrow	Mature One comm Research
2	Thermal Treatment	 Pyrolysis Gasification 	\rightarrow	Various typ (depending Various typ (depending
3	Biological Production	 Fermentation 	\rightarrow	Research
		 Microbial Electrolysis 	\rightarrow	Research

nercial facility

monolith

bes. Proven g on feedstock)

pes. Proven g on feedstock)

GHD **The Four Phases of Biogas Production**

Penn State, https://www.e-education.psu.edu/egee439/node/727 USEPA, https://www.epa.gov/lmop/basic-information-about-landfill-gas

Time After Placement

PROCESS

- Anaerobic microorganisms break down organic matter and produce H_2
- Goal is to inhibit production of H₂-consuming microorganisms
 - ✓ Pre-treat inoculum
 - ✓ Keep pH outside of methanogen optimal pH range of 7-8
- No light required ("dark fermentation")
- HRT 16 to 24 hours

FEEDSTOCK

- Variety of wastes have been tested (Ag, WW, FW, sewage sludge) •
- Pre-treatment of lignocellulosic materials to improve yield

CHALLENGES / NEXT STEPS

- Improve rate & yield
- Required separation of H₂ and CO₂ after production
- Only lab scale currently
- Limited COD conversion (effluent contains organic acids) •
 - \rightarrow Combine with downstream process to make industrially viable.

 $2H^+ + 2e^- \leftrightarrow H_2$

 $C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 12H_2$

 $C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 2CO_2 + 4H_2$

(Acetic acid pathway)

 $C_6H_{12}O_6 \rightarrow CH_3COOH + CH_3CH_2COOH + CO_2 + H_2$

(Propionic acid pathway)

 $C_6H_{12}O_6 + 6H_2O \rightarrow 2CH_3CH_2CH_2COOH + 2CO_2 + 2H_2$

(Butyric acid pathway)

Osman, A.I., Deka, T.J., Baruah, D.C. et al. Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conv. Bioref. (2020)

- Use purple non-sulfur (PNS) microbes. • Bacteria selection factors include:
 - Ability to utilize available light from light source
 - Substrate degradation efficiency
- Major hurdle is light penetration efficient photobioreactor with ullethigh light utilization efficiency is essential to commercialization
- Key considerations: temperature, pH, substrate concentration, ulletsource of light, illumination intensity
- PNS bacteria are anaerobic, have high nutrient uptake

$C_6H_{12}O_6 + 6H_2O \xrightarrow{hv} 6CO_2 + 12H_2$

Osman, A.I., Deka, T.J., Baruah, D.C. et al. Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conv. Bioref. (2020)

GHL Microbial Fuel Cell (MFC) – Electricity Production

OVERVIEW & CHALLENGES

- Electrons flow from the anode to the cathode
- O₂ has high redox potential (good cathodic receiver)
 - Poor contact of O_2 with electrode leading to slow • reaction rate
- Slow rate of reduction on normal carbon cathode •
 - Catalytic-coated electrodes are expensive rare metals

RESEARCH

- Electron acceptors
 - ✓ Consider aquatic system pollutants
 - ✓ Increase voltage potential
- Electrode material
- Type of substrate and microorganisms

 $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ (E⁰ = 1.23 V)

OVERVIEW

- Electrons flow from the anode to the cathode requires power supply to make reaction thermodynamically feasible
- Theoretically half the electricity required for water electrolysis

CHALLENGES / RESEARCH

- High capital cost (high electrode and membrane or separator costs). \succ Lower cost cathode – stainless steel vs. platinum (Penn State U)
 - \succ Reactor design separation distance
- Improve rate & yield
 - Bacterial cultures
 - > Hybrid systems integrating dark fermentation and MEC processes
 - ➢ MFC as power supply for MEC

- Cathode : $8e^- + 8H^+ \rightarrow 4H_2$
- $Overall: CH_3COOH + 2H_2O \rightarrow 2CO_2 + 4H_2$

Chorbadzhiyska, E., Hubenova, Y., Hristov, G., Mitov, M. Microbial Electrolysis Cells as Innovative Technology for Hydrogen Production. South-West University & Plovdiv University (2011)

GHD **Optimization Considerations – System Coupling**

Marone, A., Ayala-Campos, A., Trably, E., Carmona-Martinez, A., Moscoviz, R., Latrille, E., Steyer, J., Alcaraz-Gonzalez, V., Bernet, N. Coupling Dark Fermentation and Microbial Electrolysis to Enhance Bio-Hydrogen Production from Agro-Industrial Wastewaters and By-Products in a Biorefinery Framework. International Journal of Hydrogen Energy, Volume 42, Issue 3, (2017)

Dark Fermentation & MEC

Design improvements (bacterial cultures, electrode ٠ materials, system coupling...) to increase rate & yield and lower costs

Case Study Current Case (2015) Current Case (2015) byproduct credit Future Case (2025) Future Case⁶(2025) byproduct credit

Randolph, K., Studer, S., Hydrogen Production Cost from Fermentation, Department of Energy (2017)

Other Emerging Biological Waste Conversion Pathways

- Production of bioplastics ullet
- Production of animal feed •

Producing a natural alternative for plastic from waste(water) streams!

organic acids

sludge

· · · · · · · · · · · · · · · · · · ·				
	Optimistic Value	Baseline	Conservative Value	
	(2007\$/kg H ₂)	(2007\$/kg H ₂)	(2007\$/kg H ₂)	
	\$59.76	\$67.71	\$75.67	
with	\$40.88	\$51.02	\$61.16	
	\$7.68	\$8.56	\$9.43	
with	\$3.40	\$5.65	\$7.91	

*Thank You

© 2023 GHD. All rights reserved.

\rightarrow The Power of Commitment